Applied Mathematics and Mechanics (English Edition) ›› 2011, Vol. 32 ›› Issue (4): 521-532.doi: https://doi.org/10.1007/s10483-011-1435-x

• Articles • Previous Articles    

Two new predictor-corrector algorithms for second-order cone programming

 ZENG You-Fang1,2, BAI Yan-Qin1, JIAN Jin-Bao2, TANG Chun-Ming2   

  1. 1. Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China;
    2. College of Mathematics and Information Science, Guangxi University, Nanning 530004, P. R. China
  • Received:2010-12-20 Revised:2011-02-24 Online:2011-03-29 Published:2011-04-01

Abstract: Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(ε0/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.

2010 MSC Number: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals