[1] ZHANG Da-yong. Researches on Theoretical Ecology [M]. Beijing: China Higher Education Press, Heidelberg: Springer- Verlag, 2000. (in Chinese) [2] CHEN Lan-sun, CHEN Jian. Nonlinear Biological Dynamic System [M]. Beijing: Science Press,1993. (in Chinese) [3] YUAN Cun-de, PE Yong-zhen. Persistence of two-species ayala competitive model with different diffusions [J]. Applied Mathematics and Mechanics (English Edition), 1999,20 (4): 457 - 464. [4] ZHANG Yin-ping, SUN Ji-tao. Persistence in a three species Lotka-Volterra nonperiodic predatorprey system [J]. Applied Mathematics and Mechanics (English Edition), 2000,21(8): 879 - 884. [5] GUO Rui-hai, YUAN Xiao-feng. Hopf bifurcation for a ecological mathematical model on microbe populations [J]. Applied Mathematics and Mechanics (English Edition), 2000,21 (7): 761 - 766. [6] LI Li. Qualitative Theory and Quantitative Methods of Strongly Nonlinear Oscillation System [M].Beijing: Science Press, 1997. (in Chinese) [7] LING Fu-hua. Numerical Research on Nonlinear Dynamic System[M]. Shanghai: Shanghai Jiaotong University Press, 1989. (in Chinese) [8] Myerscough M R, Darwen M J, Hogarth W L. Stability, persistence and structural stability in a classical predator-prey model[ J ]. Ecological Modelling, 1996,89: 31 - 42. [9] LIN Jian-zhong, LIN Jiang, ZHU Li-bing. Research on the particle dispersion in the particulate twophase round jet [ J]. Applied Mathematics and Mechanics (English Edition), 1999,20(5):495 -502. [10] WANG Yin-bang. Tlhe problem of an extemal circular crack under asymmetric loadings[J]. Applied Mathematics and Mechanics (English Edition), 2001,22(1):10 - 16. [11] HUANG Xian-kai, DONG Qin-xi. On the existence of periodic solutions to higher dimensional periodic system with delay[J]. Applied Mathematics and Mechanics (English Edition), 1999,20(8):908 - 911. |