THE NONLINEAR NONLOCAL SINGULARLY PERTURBED PROBLEMS FOR REACTION DIFFUSION EQUATIONS
MO Jia-qi1, ZHU Jiang2
1. Department of Mathematics, Anhui Normal University, Wuhu, Anhiu 241000, P.R.China; 2. ICEES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P.R.China
[1] MO Jia-qi, Shao S. The singularly perturbed boundary value problems for higher-order semilinear elliptic equations[J]. Adv in Math, 2001,30(2): 141-148.
[2] MO Jia-qi, OUYANG Cheng. A class of nonlocal boundary value problems of nonlinear elliptic systems in unbounded domains[J]. Acta Math Sci, 2001,21B(l):93-97.
[3] MO Jia-qi. A class of nonlinear singularly perturbed problems for reaction diffusion equation with time delays[J]. J Systems Sci Math Sci, 2000,20(4):412-416.
[4] MO Jia-qi. A class of singularly perturbed reaction diffusion integral differential system[J]. Acta Math Appl Sinica, 1999,15(1): 19-23.
[5] MO Jia-qi. A singularly perturbed nonlinear boundary value problem[J]. J Math Anal Appl,1993,178(1):289-293.
[6] MO Jia-qi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China, 1989,32(11): 1306-1315.
[7] Holmes M H. Introduction to Perturbation Methods[M]. Texts in Applied Mathematics, 20, New York: Springer-Verlag, 1991,105-159.
[8] De Jager E M, JIANG Fu-ru. The Theory of Singular Perturbations[M]. Amsterdam: North-Holland, 1996,91-135.
[9] Pao C V. Comparison methods and stability analysis of reaction diffusion systems[J]. Lecture Notes Pure Appl Math, 1994,162(1):277-292.