[1] Newton I. On the binomial theorem for fractional and negative exponents[A].In:G D Walcott Ed.A Source Book in Mathematics[C]. New York:McGraw Hill Book Company, 1929,224-228.
[2] Dienes P. The Taylor Series[M]. Oxford: Dover, 1931.
[3] LIAO Shi-jun.The proposed homotopy analysis method for nonlinear problems[D].Ph D Dissertation.Shanghai:Shanghai Jiaotong University,1992.
[4] LIAO Shi-jun, An approximate solution technique not depending on small parameters: a special example[J]. Internat J Non-Linear Mech,1995,30: 371-380.
[5] LIAO Shi-jun. A kind of approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics[J]. Internat J Non-Linear Mech,1997,32: 815-822.
[6] LIAO Shi-jun. A simple way to enlarge the convergence region of perturbation approximations[J]. Nonlinear Dynamics,1999,19:93-110.
[7] LIAO Shi-jun. An explicit, totally analytic approximation of Blasius' viscous flow problems[J]. Internat J Non-Linear Mech,1999,34: 759-778.
[8] LIAO Shi-jun. A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate[J]. J Fluid Mech,1999,385: 101-128.
[9] LIAO Shi-jun, Campo A. Analytic solutions of the temperature distribution in Blasius viscous flow problems[J]. J Fluid Mech,2002,453: 411-425.
[10] LIAO Shi-jun, An analytic approximation of the drag coefficient for the viscous flow past a sphere[J]. Internat J Non-Linear Mech,2002,37: 1-18.
[11] Nayfeh A H. Perturbation Methods[M]. New York: John Wiley & Sons, Inc, 2000.
[12] Lyapunov A M. General Problem on Stability of Motion[M]. London: Taylor & Francis, 1992.(English version)
[13] Karmishin A V, Zhukov A I, Kolosov V G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M]. Moscow: Mashinostroyenie, 1990.
[14] Adomian G. Nonlinear stochastic differential equations[J]. J Math Anal Appl, 1976,55: 441-452.
[15] Adomian, G.Solving Frontier Problems of Physics: the Decomposition Method[M]. Boston: Kluwer Academic Publishers, 1994.
[16] Wazwaz A M. The decomposition method applied to systems of partial differential equations and to the reactioncdiffusion Brusselator model[J]. Applied Mathematics and Computation,2000,110: 251-264.
[17] Shawagfeh N T. Analytical approximate solutions for nonlinear fractional differential equations[J]. Applied Mathematics and Computation,2002,131: 517-529. |