[1] Kulkarni, A. J. and Zhou, M. Surface-effects-dominated thermal and mechanical responses of zinc
oxide nanobelts. Acta Mechanica Sinica, 22(3), 217–224 (2006)
[2] Li, W. G., Yang, F., and Fang, D. N. The temperature-dependent fracture strength model for
ultra-high temperature ceramics. Acta Mechanica Sinica, 26(2), 235–239 (2010)
[3] Kaufman, L., Clougher, E. V., and Berkowit, J. B. Oxidation characteristics of hafnium and
zirconium diboride. Transactions of the Metallurgical Society of AIME, 239(4), 458–466 (1967)
[4] Gee, S. M. and Little, J. A. Oxidation behavior and protection of carbon/carbon composites.
Journal of Materials Science, 26(4), 1093–1100 (1991)
[5] Opila, E., Levine, S., and Lorincz, J. Oxidation of ZrB2- and HfB2-based ultra-high temperature
ceramics: effect of Ta additions. Journal of Materials Science, 39(19), 5969–5977 (2004)
[6] Monteverde, F. The thermal stability in air of hot-pressed diboride matrix composites for uses at
ultra-high temperatures. Corrosion Science, 47(8), 2020–2033 (2005)
[7] Pilling, N. B. and Bedworth, R. E. The oxidation of metals at high temperatures. Journal of the
Institute of Metals, 29, 529–582 (1923)
[8] Wagner, C. The theory of the warm-up process. Zeitschrift fur Physikalische Chemie–Abteilung
B–Chemie der Elementarprozesse Aufbau der Materie, 21(1-2), 25–41 (1933)
[9] Markworth, A. J. Kinetics of anisothermal oxidation. Metallurgical Transactions A–Physical Metallurgy
and Materials Science, 8(12), 2014–2015 (1977)
[10] Parthasarathy, T. A., Rapp, R. A., Opeka, M., and Kerans, R. J. A model for the oxidation of
ZrB2, HfB2 and TiB2. Acta Materialia, 55(17), 5999–6010 (2007)
[11] Chou, K. C. and Hou, X. M. Kinetics of high-temperature oxidation of inorganic nonmetallic
materials. Journal of the American Ceramic Society, 92(3), 585–594 (2009)
[12] Hou, X. M. and Chou, K. C. Investigation of isothermal oxidation of AlN ceramics using different
kinetic model. Corrosion Science, 51(3), 556–561 (2009)
[13] Huntz, A. M. Stresses in NiO, Cr2O3 and Al2O3 oxide scales. Materials Science and Engineering
A–Structural Materials Properties Microstructure and Processing, 201(1-2), 211–228 (1995)
[14] Tolpygo, V. K. and Clarke, D. R. Competition between stress generation and relaxation during
oxidation of an Fe-Cr-Al-Y alloy. Oxidation of Metals, 49(1-2), 187–212 (1998)
[15] Chen, L. Q. and Shen, J. Applications of semi-implicit Fourier-spectral method to phase field
equations. Computer Physics Communications, 108(2-3), 147–158 (1998)
[16] Chen, L. Q. Phase-field models for microstructure evolution. Annual Review of Materials Research,
32, 113–140 (2002)
[17] Ma, X. Q., Shi, S. Q.,Woo, C. H., and Chen, L. Q. The phase field model for hydrogen diffusion and
γ-hydride precipitation in zirconium under non-uniformly applied stress. Mechanics of Materials,
38(1-2), 3–10 (2006)
[18] Guo, X. H., Shi, S. Q., and Qiao, L. J. Simulation of hydrogen diffusion and initiation of hydrogeninduced
cracking in PZT ferroelectric ceramics using a phase field model. Journal of the American
Ceramic Society, 90(9), 2868–2872 (2007)
[19] Song, Y. C., Soh, A. K., and Ni, Y. Phase field simulation of crack tip domain switching in
ferroelectrics. Journal of Physics D–Applied Physics, 40(4), 1175–1182 (2007)
[20] Shewmon, P. G. Diffusion in Solid, McGraw-Hill, New York (1963)
[21] Reddy, K. P. R., Smialek, J. L., and Cooper, A. R. O-18 tracer studies of Al2O3 scale formation
on NiCrAl alloys. Oxidation of Metals, 17(5-6), 429–449 (1982) |