[1] Brezzi, F. and Douglas, Jr. J. Stabilized mixed method for the Stokes problem. Numer. Math.,
53(1-2), 225–235 (1988)
[2] Douglas, Jr. J. and Wang, J. P. An absolutely stabilized finite element method for the Stokes
problem. Math. Comp., 52, 495–508 (1989)
[3] Chung, T. Computational Fluid Dynamics, Cambridge University Press, Cambridge (2002)
[4] Holmes, P., Lumley, J. L., and Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems
and Symmetry, Cambridge University Press, Cambridge, UK (1996)
[5] Fukunaga, K. Introduction to Statistical Pattern Recognition, Academic Press, Boston (1990)
[6] Jolliffe, I. T. Principal Component Analysis, Springer-Verlag, Berlin (2002)
[7] Crommelin, D. T. and Majda, A. J. Strategies for model reduction: comparing different optimal
bases. J. Atmos. Sci., 61, 2306–2317 (2004)
[8] Majda, A. J., Timofeyev, I., and Vanden-Eijnden, E. Systematic strategies for stochastic mode
reduction in climate. J. Atmos. Sci., 60, 1705–1723 (2003)
[9] Selten, F. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model.
J. Atmos. Sci., 54, 2100–2114 (1997)
[10] Lumley, J. L. Coherent Structures in Turbulence, In Transition and Turbulence (ed.Meyer, R. E.),
Academic Press, New York, 215–242 (1981)
[11] Aubry, Y. N., Holmes, P., Lumley, J. L., and Stone, E. The dynamics of coherent structures in
the wall region of a turbulent boundary layer. J. Fluid Mech., 192, 115–173 (1988)
[12] Sirovich, L. Turbulence and the dynamics of coherent structures: part I–III. Quart. Appl. Math.,
45(3), 561–590 (1987)
[13] Joslin, R. D., Gunzburger, M. D., Nicolaides, R., Erlebacher, G., and Hussaini, M. Y. A selfcontained
automated methodology for optimal flow control validated for transition delay. AIAA
Journal, 35, 816–824 (1997)
[14] Ly, H. V. and Tran, H. T. Proper orthogonal decomposition for flow calculations and optimal
control in a horizontal CVD reactor. Quart. Appl. Math., 60, 631–656 (2002)
[15] Moin, P. and Moser, R. D. Characteristic-eddy decomposition of turbulence in channel. J. Fluid
Mech., 200, 471–509 (1989)
[16] Rajaee, M., Karlsson, S. K. F., and Sirovich, L. Low dimensional description of free shear flow
coherent structures and their dynamical behavior. J. Fluid Mech., 258, 1–29 (1994)
[17] Kunisch, K. and Volkwein, S. Galerkin proper orthogonal decomposition methods for parabolic
problems. Numer. Math., 90, 117–148 (2001)
[18] Kunisch, K. and Volkwein, S. Galerkin proper orthogonal decomposition methods for a general
equation in fluid dynamics. SIAM J. Numer. Anal., 40, 492–515 (2002)
[19] Kunisch, K. and Volkwein, S. Control of Burgers’ equation by a reduced order approach using
proper orthogonal decomposition. J. Optim. Theory Appl., 102, 345–371 (1999)
[20] Ahlman, D., S¨odelund, F., Jackson, J., Kurdila, A., and Shyy, W. Proper orthogonal decomposition
for time-dependent lid-driven cavity flows. Numer. Heat Transfer Part B, 42(4), 285–306
(2002)
[21] Luo, Z. D., Wang, R. W., Zhu, J. Finite difference scheme based on proper orthogonal decomposition
for the non-stationary Navier-Stokes equations. Sci. China Ser. A: Math., 50(8), 1186–1196
(2007)
[22] Luo, Z. D., Chen, J., Zhu, J., Wang, R. W., and Navon, I. M. An optimizing reduced order FDS
for the tropical pacific ocean reduced gravity model. Int. J. Numer. Methods Fluids, 55, 143–161
(2007)
[23] Luo, Z. D., Chen, J., Navon, I. M., and Yang, X. Z. Mixed finite element formulation and error estimates
based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations.
SIAM J. Numer. Anal., 47(1), 1–19 (2008)
[24] Luo, Z. D., Chen, J., Sun, P., and Yang, X. Z. Finite element formulation based on proper
orthogonal decomposition for parabolic equations. Sci. China Ser. A: Math., 52(3), 585–596 (2009)
[25] Sun, P., Luo, Z. D., and Zhou, Y. J. Some reduced finite difference schemes based on a proper
orthogonal decomposition technique for parabolic equations. Appl. Numer. Math., 60, 154–164
(2010)
[26] Volkwein, S. Optimal control of a phase-field model using the proper orthogonal decomposition.
ZFA Math. Mech., 81, 83–97 (2001)
[27] Antoulas, A. Approximation of large-scale dynamical systems. Soc. Indust. Appl. Math., 10, 12–60
(2005)
[28] Stewart, G. W. Introduction to Matrix Computations, Academic Press, New York (1973)
[29] Noble, B. Applied Linear Algebra, Prentice-Hall, New Jersey (1969)
[30] Girault, V. and Raviart, P. A. Finite Element Approximations of the Navier-Stokes Equations,
Theorem and Algorithms, Springer-Verlag, New York (1986)
|