[1] Birkhoff G D. Dynamical System[M]. New York:AMS College Publ, Providence, RI, 1927.
[2] Santilli R M. Foundations of Theoretical Mechanics Ⅱ [M]. New York:Springer-Verlag, 1983, 110-280.
[3] MEI Feng-xiang. Noether theory of Birkhoffian system[J]. Science in China, Series A, 1993, 36(12):1456-1547.
[4] MEI Feng-xiang. Stability of equilibrium for the autonomous Birkhoffian system [J]. Chinese Science Bulletin, 1993, 38(10):816-819.
[5] WU Hui-bin, MEI Feng-xiang. Transformation theory of generalized Birkhoffian system[J]. Chinese Science Bulletin, 1995, 40 (10):885-888. (in Chinese).
[6] MEI Feng-xiang, Levesque E I. Generalized canonical realization and Birkhoff's realization of Chaplygin's nonholonomic system[J]. Transactions of the CSME, 1995, 19 (2):59-73.
[7] MEI Feng-xiang. Poisson's theory of Birkhoffian system[J]. Chinese Science Bulletin, 1996, 41(8):641-645.
[8] MEI Feng-xiang. Stability of motion for a constrained Birkhoffian system in terms of independent variables[J]. Applied Mathematics and Mechanics (English Edition ), 1997, 18(1):55-60.
[9] MEI Feng-xiang. The progress of research on dynamics of Birkhoff's system[J]. Advances in Mechanics, 1997, 27(4):436-446. (in Chinese).
[10] GUO Ying-xiang, MEI Feng-xiang. Integrability for Pfaff constrained systems:A geometrial theory[J]. Acta Mechanica Sinica, 1998, 14(1):85-91.
[11] MEI Feng-xiang, ZHANG Yong-fa, SHANG Mei. Lie symmetries and conserved quantifies of Birkhoffian system[J]. Mechanics Research Communications, 1999, 26(1):7-12.
[12] CHEN Xiang-wei, LUO Shao-kai, MEI Feng-xiang. Bifurcation of equilibrium points for secondorder autonomous Birkhoffian system[J]. Acta Mechanica Solida Sinica, 2000, 21(3):251-255. (in Chinese).
[13] GUO Yong-xin, LUO Shao-kai, SHANG Mei, et al. Birkhoffian formulations of nonholonomic constrained systems[J]. Reports on Mathematical Physics, 2001, 47 (3):313-322.
[14] MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-fa, et al. Dynamics of Birkhoffian System[M]. Beijing:Beijing Institute of Technology Press, 1996. (in Chinese).
[15] MEI Feng-xiang. Applications of Lie Groups and Lie Algebras on Constrained Mechanical Systems[M]. Beijing:Science Press, 1999. (in Chinese).
[16] LI Zi-ping. Classical and Quantum Constrained Systems and Their Symmetries [M]. Beijing:Beijing Polytechnica University Press, 1993. (in Chinese).
[17] LUO Shao-kai. On the theory of relativistic analytical mechanics[J]. Teaching Material Communication, 1987, (5):31-34. (in Chinese).
[18] LUO Shao-kai. Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic system[A]. In:WANG Zhao-lin Ed. Proc ICDVC[C]. Beijing:Peking University Press, 1990, 645-652.
[19] LUO Shao-kai. Dynamical theory of relativistic nonlinear nonholonomic system[J]. Shanghai Journal of Mechanics, 1991, 12(1):67-70. (in Chinese).
[20] LUO Shao-kai. Relativistic Hamilton principles and Lagrange equations in the generalized event space[J]. College Physics, 1992, 11(10):14-16. (in Chinese).
[21] LUO Shao-kai. Relativistic generalized Volterra equations of variable mass high-order nonlinear nonholonomic system[J]. Acta Mathematica Scientia, 1992, 12(Supplementary issue):27-29. (in Chinese).
[22] LUO Shao-kai. Relativistic variation principles and equations of motion for. variable mass controllable mechanics system[J]. Applied Mathematics and Mechanics (English Edition ), 1996, 17(7):683-692.
[23] LI Yuan-cheng, FANG Jian-hui. Unified form of variable mass of universal D'Alembert principle with relativity[J]. College Physics, 1991, 13(6):27-29. (in Chinese).
[24] FANG Jian-hui, LI Yuan-cheng. The variation principle of relativistic mechanics of variable mass system in the velocity space[J]. Mechanics and Practice, 1994, 13(5):19-20. (in Chinese).
[25] LUO Shao-kai. Rotational relativistic mechanics and rotational relativistic analytical mechanics[J]. Journal of Beijing Irstitute of Technology, 1996, 16(S1):154-158. (in Chinese).
[26] LUO Shao-kai. The theory of rotational relativistic analytical mechanics[J]. Applied Mathematics and Mechanics (English Edition ), 1998, 19(1 ):45-58.
[27] FU Jing-li, CHEN Xiang-wei, LUO Shao-kai. Algebraic structures and Poisson integrals of relativistic dynamical equations for rotational systems[J]. Applied Mathematics and Mechanics (Enslish Edition), 1999, 20(11 ):1266-1274.
[28] FU Jing-li, CHEN Xiang-wei, LUO Shao-kai. Lie symmetries and conserved quantities of rotational relativistic systens[J]. Applied Mathematics and Mechanics (English Edition ), 2000, 21(5):549-556.
[29] LUO Shao-kai, GUO Yong-xin, CHEN Xiang-wei, et al. Integration theory of the dynamics of a rotational relativistic system[J]. Acta Physica Sinica, 2001, 50 (11 ):2053-2058. (in Chinese).
[30] QIAO Yong-fen, LI Ren-Jie, MENG Jun. Lindelof's equations of nonholonomic rotational relativistic systems[J]. Acta Physica Sinica, 2001, 50(9):1637-1642. (in Chinese).
[31] FANG Jian-hui, ZHAO Song-qing. Lie symmetries and conserved quantities of relativistic rotational variable mass system[J]. Acta Physica Sinica, 2001, 50(3):390-393. (in Chinese).
[32] FU Jing-li, WANG Xin-min. Li symmetries and conserved quantities of relativistic Birkhoff systems[J]. Acta Physica Sinica, 2000, 49(6):1023-1029. (in Chinese).
[33] FU Jing-li, CHEN Xiang-wei, LUO Shao-kai. The Noether's theory of relativistic Birkhoff systems[J]. Acta Mechanica Solida Sinica, 2001, 22 (3):263-267. (in Chinese).
[34] FU Jing-li, CHEN Li-qun, LUO Shao-kai, et al. On the research for the dynamics of relativistic Birkhoff systems[J]. Acta Physica Sinica, 2001, 50 (12):2289-2295. (in Chinese).
[35] LUO Shao-kai, FU Jing-li, CHEN Xiang-wei. Basic theory of relativictic Birkhoffian dynamics of rotational system[J]. Acta Physica Sinica, 2001, 50(3):383-389. (in Chinese).
[36] LUO Shao-kai, CHEN Xiang-wei, FU Jing-li. Birkhoff's equations and geometrical theory of rotational relativistic system[J]. Chinese Physics, 2001, 10(4):271-276.
[37] LUO Shao-kai, GUO Yong-xin, CHEN Xiang-wei, et al. A field method for solving the equations of motion of a rotational relativistic Birkhoffian system[J]. Acta Physica Sinica, 2001, 50(11):2049-2052. (in Chinese).
[38] Noether A E. Invariance variations problems[J]. Kgl Ges Wiss Nachr Gottingen Math-Phys, 1918, (2):235-257.
[39] Candottie E, Palmieri C, Vitale B. On the inversion of Noether's theory in classical dynamical system[J]. America Journal of Physics, 1972, 40 (5):424-429.
[40] Djukic Dj S, Vujanovic B. Noether's theory in classical nonconservative mechanics[J]. Acta Mechanica, 1975, 23(1):17-27.
[41] Vujanovic B. Conservation laws of dynamical system via D'Alernbert principle[J]. International Journal of Non-Linear Mechanics, 1978, 13(2):185-197.
[42] Vujanovic B. A study of conservation laws of dynamical systems by means of the differential variational principles of Jourdain and Gauss[J]. Acta Mechanica, 1986, 65(1):63-80.
[43] LI Zi-ping. Symmetrical transformation of constrained system[J]. Acta Physica Sinica, 1981, 30 (12):1699-1705. (in Chinese).
[44] LI Zi-ping. Canonical form's Noether theorem and its inverse theorem of nonconservative requar system[J]. Chinese Science Bulletin, 1992, 37(23):2204-2205. (in Chinese).
[45] Bahar L Y, Kwatny H G. Extension of Noether's theory to constrained nonconservative dynamical systems[J]. International Journal of Non-Linear Mechanics, 1987, 22(2):125-138.
[46] LIU Duan. Conserved laws of nonholonomic nonconservative dynamical system[J]. Acta Mechanica Sinica, 1989, 21(1 ):75-83. (in Chinese).
[47] LIU Duan. Noether's theorem and Noether's inverse theorem of nonholonomic nonconservative dynamical system[J]. Science in China, Series A, 1991, 31(4):419-429. (in Chinese).
[48] LUO Shao-kai. Generalized Noether's theorem of nonholonomic nonpotential system in noninertial reference frame[J]. Applied Mathematics and Mechanics (English Edition ), 1991, 12(9):927-934.
[49] LUO Shao-kai. Generalized Noether's theorem of variable mass higher-order nonholonomic mechanical system in noninertial reference frame[J]. Chinese Science Bulletin, 1991, 36 (22):1930-1932. (in Chinese).
[50] LUO Shao-kai. Generalized conserved laws of relativistic mechanics[J]. Journal of Xinyang Teachers College, 1991, 4(4):57-64. (in Chinese).
[51] LUO Shao-kai. On the invariant theory of nonholonomic system with constraints of non-Chetaev type[J]. Acta Mechanica Solida Sinica, 1993, 6(1):47-57.
[52] ZNAO Yue-yu, MEI Feng-xiang. Symmetries and Conserved Quantities of Mechanical System[M]. Beijing:Science Press, 1999, 1-72. (in Chinese). |