[1] Doolan E P, Miller J J H, Schilders W H A. Uniform Num erica l Methods for Problems With Initial and Boundary Layers[M]. Dublin: Boole Pr ess,1980.
[2] Kadalbajoo M K, Reddy Y N. Asymptotic and numerical analysis of singular perturbation problems: a Survey[J]. Appl Math Comput,1989,30:223-259.
[3] Weekman V W, Gorring R L. Influence of volume change on gas-phase reactions in porous catalysts[J]. J Catalysis,1965,4:260-270.
[4] Nayfeh A H. Introduction to Perturbation Techniques[M]. New York: Wiley, 1993.
[5] O'Malley R E. Sigular Perturbation Methods for Ordinary D ifferential Equation[M]. New York: Springer-Verlag, 1991.
[6] Farrell P A, Hegarty A F, Milier J J H, et al. Robust Comput ationa l Techniques for Boundary Layers[M]. Boca Raton: Chapman & Hall/CRC, 2000.[
[7] Miller J J H, O'Riordan E, Shishkin G I. Fitted Numeri cal Methods for Singular Perturbation Problems[M]. Singapore: World Scientific, 1996.
[8] Roos H G, Stynes M, Tobiska L. Numerical Methods for Sin gu larly Perturbed Differential Equations: Convection-Diffusion and Flow Problems[M]. Berlin: Springer-Verlag, 1996.
[9] Cziegis R. The numerical solution of singularly perturbed nonloc al problem[J]. Lietuvas Matem Rink,1988,28:144-152. (i n Russian)
[10] Cziegis R. The difference schemes for problems with nonlo cal con ditions[J]. Informatica (Lietuva),1991,2:155-170.
[11] Bitsadze A B, Samarskii A A. Of some simple generalizat ion the linear elliptic boundary value problems[J]. Soviet Math Dokl,1969,185:739-740. (in Russian)
[12] Nahushev A M. On nonlocal boundary value problems[J]. Di fferential Equations,1985,21:92-101. (in Russian)
[13] HE Ji-huan. Variational iteration method: a kind of nonlinear anal ytical technique: some examples[J]. International Journal of Nonlinear Mecha nics,1999,34(4):699-708.
[14] HE Ji-huan. Homotopy perturbation technique[J]. Computer M ethod s in Applied Mechanics and Engineering,1999,178:257-262.[
[15] HE Ji-huan. A new perturbation technique which is also valid f or l arge parameters[J]. Journal of Sound and Vibration,1999,229(5):1257-1263.
[16] HE Ji-huan. A coupling method of homotopy technique and pertur bati on technique for nonlinear problems[J]. International Journal of Nonlinear Mechanics, 2000,35(1):37-43.
[17] HE Ji-huan. A review on some new recently developed nonlinear anal ytical techniques[J]. Int J Nonlinear Sciences & Numerical Simulation,2000,1(1):51-70.
[18] HE Ji-huan. A modified perturbation technique depending upon an ar tificial parameter[J]. Meccanica, 2000,35:299-311.
[19] HE Ji-huan. Iteration perturbation method for strongly nonline ar os cillations[J]. Journal of Vibration & Control,2001,7(5): 631-642.
[20] Amiraliyev G M. Difference method for the solution of one proble m of the theory of dispersive waves[J]. Differential Equations,1990,26:2146-2154. (in Russian)
[21] Amiraliyev G M,Duru H.A uniformly convergent f inite difference method for a singularly perturbed initial value problem[J].Applied Mathematics Mechanics(English Ed),1999,20(4):379-387.
[22] Amiraliyev G M, Mamedov Y D. Difference scheme on the uniform mesh for singularly perturbed pseudo-parabolic equation[J]. Turkish J Mat h,1995,19:207-222.
[23] Samarskii A A. Theory of Difference Schemes[M]. 2nd Ed. Nauka: Moscow, 1983; German Transl. Leibzig: Geest Portig, 1984.
[24] Dorr F W, Parter S V, Shampine L F. Shampine, applicatio ns of the ma ximum principle to singular perturbation problems[J]. SIAM Rev,1973,15:43-88.
[25] Protter M H, Weinberger H F. Maximum Principles in Di fferen tial Equations[M]. Englewood Cliffs N J: Prentice-Hall, 1967. |