[1] Gerhart P M. Fundamentals of Fluid Mechanics[M]. Wesly Publishing Comp Inc, 1993,11-20. [2] Vujanovic B, Stauss A M, Djukic Dj. A variational solution of the Rayleigh problem for a power law non-Newtonian conducting fluid[J]. Ingenieur-Archiv, 1972,41: 381-386. [3] Sapunkov Ya G. Rayleigh problem of non-Newtonian electroconductive fluids[J]. J Appl Math Tech Physics, 1970,2:50-55. [4] Vujanovic B. An approach to linear and nonlinear heat transfer problem using a Lagrangian[J]. J AIAA, 1971,9:327-330. [5] Birkhoff G. Mathematics for engineers[J]. Elect Eng, 1948,67:1185-1192. [6] Morgan A J A. The reduction by one of the number of independent variables in some systems of nonlinear partial differential equations[J]. Quart J Math Oxford, 1952,3(2):250-259. [7] Abd-el-Malek M B, Badran N A. Group method analysis of unsteady free-convective laminar boundary-layer flow on a nonisothermal vertical circular cylinder[J]. Acta Mechanica, 1990,85:193-206. [8] Abd-el-Malek M B, Boutros Y Z, Badran N A. Group method analysis of unsteady free-convective boundary-layer flow on a nonisothermal vertical flat plate[J]. J Engineering Mathematics, 1990,24: 343-368. [9] Boutros Y Z, Abd-el-Malek M B, El-Awadi A, et al. Group method for temperature analysis of thermal stagnant lakes[J]. Acta Mechanica, 1999,114: 131-144. [10] Fayez H M, Abd-el-Malek M B. Symmetry reduction to higher order nonlinear diffusion equation[J]. Int J Appl Math, 1999,1:537-548. [11] Ames W F. Similarity for the nonlinear diffusion equation[J]. I & EC Fundamentals, 1965,4:72-76. [12] Moran M J, Gaggioli R A. Reduction of the number of variables in system of partial differential equations with auxiliary conditions[J]. SIAM J Applied Mathematics, 1968,16:202-215. [13] Burden R, Faires D. Numerical Analysis[M]. Prindle: Weberand Scmidt, 1985. |