[1] Podlubny, I. Fractional Differential Equations, Academic Press, New York (1999)
[2] Kilbas, A. A., Sarivastava, H. M., and Trujillo, J. J. Theory and Applications of Fractional DifferentialEquations, Elsevier, New York (2006)
[3] Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press,London (2010)
[4] Sheu, L. J., Chen, H. K., Chen, J. H., and Tam, L. M. Chaotic dynamics of the fractionallydamped Duffing equation. Chaos, Solitons and Fractals, 32(4), 1459-1468 (2007)
[5] Ge, Z. M. and Ou, C. Y. Chaos synchronization of fractional order modified Duffing systems withparameters excited by a chaotic signal. Chaos, Solitons and Fractals, 35(2), 705-717 (2008)
[6] Yu, Y. G., Li, H. X., Wang, S., and Yu, J. Z. Dyanmic analysis of a fractional-order Lorenz chaoticsystem. Chaos, Solitons and Fractals, 42(2), 1181-1189 (2009)
[7] Wang, Z. H. and Hu, H. Y. Stability of a linear oscillator with damping force of the fractionalorderderivative. Science in China Series G: Physics, Mechanics and Astronomy, 53(2), 345-352(2010)
[8] Xin, G. and Yu, J. B. Chaos in the fractional order periodically forced complex Duffing's oscillators.Chaos, Solitons and Fractals, 24(4), 1097-1104 (2005)
[9] Chen, J. H. and Chen, W. C. Chaotic dynamics of the fractionally damped van der Pol equation.Chaos, Solitons and Fractals, 35(1), 188-198 (2008)
[10] Ahn, C. K. Generalized passivity-based chaos synchronization. Applied Mathematics and Mechanics(English Edition), 31(8), 1009-1018 (2010) DOI 10.1007/s10483-010-1336-6
[11] Chai, Y., Lü, L., and Zhao, H. Y. Lag synchronization between discrete chaotic systems withdiverse structure. Applied Mathematics and Mechanics (English Edition), 31(6), 733-738 (2010)DOI 10.1007/s10483-010-1307-7
[12] Liu, Y. and Lü, L. Synchronization of N different coupled chaotic systems with ring and chainconnections. Applied Mathematics and Mechanics (English Edition), 29(10), 1299-1308 (2008)DOI 10.1007/s10483-008-1005-y
[13] Luo, A. C. J. and Min, F. H. Synchronization dynamics of two different dynamical systems. Chaos,Solitons and Fractals, 44(6), 362-380 (2011)
[14] Luo, A. J. L. A theory for synchronization of dynamical systems. Communications in NonlinearScience and Numerical Simulation, 14(5), 1901-1951 (2009)
[15] Habib, D. and Antonio, L. Adaptive unknown-input observers-based synchronization of chaoticsystems for telecommunication. IEEE Transactions on Circuits Systems, 58(4), 800-812 (2011)
[16] Olga, I. M., Alexey, A. K., and Alexander, E. H. Generalized synchronization of chaos for securecommunication: remarkable stability to noise. Physics Letters A, 374(29), 2925-2931 (2010)
[17] Wang, X. Y., He, Y. J., and Wang, M. J. Chaos control of a fractional order modified coupleddynamos system. Nonlinear Analysis, 71(12), 6126-6134 (2009)
[18] Sachin, B. and Varsha, D. G. Synchronization of different fractional order chaotic systems usingactive control. Communications in Nonlinear Science and Numerical Simulation, 15(11), 3536-3546 (2010)
[19] Wu, X. J. and Lu, Y. Generalized projective synchronization of the fractional-order Chen hyperchaoticsystem. Nonlinear Dynamics, 57(1-2), 25-35 (2009)
[20] Matouk, A. E. Chaos, feedback control and synchronization of a fractional-order modified autonomousvan der Pol-Duffing circuit. Communications in Nonlinear Science and Numerical Simulation,16(2), 975-986 (2011)
[21] Abel, A. and Schwarz, W. Chaos communications — principles, schemes, and system analysis.Proceedings of the IEEE, 90(5), 691-710 (2002)
[22] Hu, N. Q. and Wen, X. S. The application of Duffing oscillator in characteristic signal detectionof early fault. Journal of Sound and Vibration, 268(5), 917-931 (2003)
[23] Nadakuditi, R. R. and Silverstein, J. W. Fundamental limit of sample generalized eigenvaluebased detection of signals in noise using relatively few signal-bearing and noise-only samples.IEEE Transactions on Industrial Electronics, 4(3), 468-480 (2010)
[24] Zhao, Z., Wang, F. L., Jia, M. X., and Wang, S. Intermittent-chaos-and-cepstrum-analysis-basedearly fault detection on shuttle valve of hydraulic tube tester. IEEE Transactions on IndustrialElectronics, 56(7), 2764-2770 (2009)
[25] Diethelm, K. and Ford, N. J. Analysis of fractional differential equations. Journal of MathematicalAnalysis and Applications, 265(2), 229-248 (2002)
[26] Li, C. P. and Zhang, F. R. A survey on the stability of fractional differential equations. EuropeanPhysical Journal Special Topics, 193(1), 27-47 (2011)
[27] Sabattier, J., Moze, M., and Farges, C. LMI stability conditions for fractional order system.Computers and Mathematics with Applications, 59(5), 1594-1609 (2010)
[28] Thavazoei, M. S. and Haeri, M. A note on the stability of fractional order system. Mathematicsand Computers in Simulation, 79(5), 1566-1576 (2009)
[29] Diethelm, K. and Ford, N. J. Multi-order fractional differential equations and their numericalsolution. Applied Mathematics and Computation, 154(3), 621-640 (2004)
[30] Diethelm, K., Ford, N. J., Freed, A. D., and Luchko, Y. Algorithms for the fractional calculus: aselection of numerical method. Computer Methods in Applied Mechanics and Engineering, 194(6-8), 743-773 (2005)
|