[1] Tamuzs V, Lagzdn' sh A Zh. A scheme of a phenomenological fracture theory [J]. Mekhan Polim, 1968, (4):638-647; see also: Kuksenko V S, Tamuzs V. Fracture Micromechanics of Polymer Materials [M]. Boston: Martinus Nijhoff Publ, 1981. [2] Lagzdyn' sh A Zh, Tamuzs V. Construction of a phenomenological theory of fracture of anisotropic media[J]. Polymer Mechanics, 1971,7:563-571. [3] Lagzdyn' sh A Zh, Tamuzs V. Orientation Averaging in Mechanics of Solids [M]. Longman Scientific & Technical Publ, 1992. [4] Bunge H J. Texture Analysis in Material Science [M]. London: Butterworths, 1982. [5] Onat E T. Representation of mechanical behaviour in the presence of internal damage[J]. Engng Fract Mech, 1986,25(5-6):605 -614. [6] Onat E T, Leckie F A. Representation of mechanical behaviour in the presence of changing internal structure[J]. Trans ASME, J Appl Mech, 1988,55(1): 1-10. [7] Adams B L, Boehler J P, Guidi M, et al. Group theory and representation of microstructure and mechanical behaviour of polycrystals[J]. J Mech Phys Solids, 1992,40(4):723-737. [8] Kanatani K I. Distribution of directional data and fabric tensors[J]. Int J Engng Sci, 1984,22(2):149-164. [9] Advani S G, Tucker Ⅲ C L. The use of tensors to describe and predict fiber orientation in short fiber composites[J]. J Rheology, 1987,31(8):751-784. [10] Advani S G, Tucker Ⅲ C L. Closure approximation for three-dimensional structure tensors[J]. J Rheology, 1990,34(3):367-386. [11] Molinari A, Canova G R, Ahzi S. Aself consistent approach of the large deformation polycrystal viscoplasticity[J]. Acta Metall, 1987,35(12):2983-2994. [12] Harren S V, Asaro R J. Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model[J]. J Mech Phys Solids, 1989,37(2):191 -232. [13] Adams B L, Field D P. A statistical theory of creep in polycrystalline materials[J]. Acta Metall Mater, 1991,39(10):2405-2417. [14] Krajcinovic D, Mastilovic S. Some fundamental issues of damage mechanics[J]. Mech Mat,1995,21(3):217-230. [15] He Q C, Curnier A. A more fundamental approach to damaged elastic stress-strain relations [J].Int J Solids Struct, 1995,32(10): 1433-1457. [16] Chen M X, Zheng Q S, Yang W. A micromechanical model of texture induced orthotropy in planar crystalline polymers[J]. J Mech Phys Solids, 1996,44(2): 157-178. [17] Zheng Q S, Collins I F. The relationship of damage variables and their evolution laws and microstructural and physical properties[J]. Proc Roy Soc Lond A, 1998,454(1973):1469- 1498. [18] Coleman B D, Gurtin M E. Thermodynamics with internal state variables[J]. J Chem Phys, 1967,47(2):597-613. [19] Noll W. A mathematical theory of the mechanical behaviour of continuous media[J]. Arch Ratl Mech Anal, 1958,2(2): 197-226. [20] Noll W. A new mathematical theory of simple materials [J]. Arch Ratl Mech Anal, 1972,48 (1):1-50. [21] Hahn T. Space-Group Symmetry[M]. In: International Tables for Crystallography , Vol,A,2nd ed. Dordrecht: D Reidel,1987. [22] Chen M X, Yang W, Zheng Q S. Simulation of crack tip superblunting of semi-crystalline polymers[J]. J Mech Phys Solids, 1998,46(2):337-356. [23] Zheng Q S, Spencer A J M. Tensors which characterize anisotropies[J]. Int J Engng Sci, 1993,31(5): 679-693. [24] Zheng Q S. Two-dimensional tensor function representations for all kinds of material symmetry[J].Proc R Soc Lond A, 1993,443(1917): 127-138. [25] Zheng Q S, Boehler J P. The description, classification, and reality of material and physical symmetries[J]. Acta Mech, 1994,102(1-4):73-89. [26] Zheng Q S. Theory of representations for tensor functions: A unified invariant approach to constitutive equations[J]. Appl Mech Rew, 1994,47(11):554-587. [27] Korn G A, Korn T M. Mathematical Handbookfor Scientists and Engineers[M]. 2nd Ed. New York: McGraw-Hill, 1968. [28] Ryser H J. Combinatorial Mathematics [M]. New York: The Mathematical Association of America, 1963. [29] Zheng Q S. On the roles of initial and induced anisotropies[A]. In: D F Parker, A H England Eds. IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics [C].Dordrecht: Kluwer Academic Publishers, 1995,57-62. [30] Barut A O , Raczka R . Theory of Group Representations and Applications [M]. 2 nd Ed.Warszawa: Polish Scientific Publishers, 1980. [31] Broker T, Tom Dieck T. Representations of Compact Lie Groups [M]. New York: SpringerVerlag, 1985. [32] Spencer A J M. A note on the decomposition of tensors into traceless symmetric tensors[J]. Int J Engng Sci, 1970,8(6):475-481. [33] Hannabuss K C. The irreducible components of homogeneous functions and symmetric tensors[J].J Inst Maths Applics, 1974,14(1): 83-88. [34] Zheng Q S, Zou W N. Irreducible decompositions of physical tensors of high orders[J]. J Engrg Math ,2000,37(1-3):273-288. [35] Zou W N, Zheng Q S, Rychlewski J, et al. Orthogonal irreducible decomposition of tensors of high orders[J]. Math Mech Solids,2001. (in Press) |