[1] Rajagopal, K. R. On boundary conditions for fluids of the differential type. Navier-Stokes Equations and Related Non-linear Problems (ed. Sequria, A.), Plenum Press, New York, 273-278 (1995)
[2] Rajagopal, K. R. Boundedness and uniqueness of fluids of the differential type. Acta Cienca Indica, 18, 1-11 (1982)
[3] Rajagopal, K. R., Szeri, A. Z., and Troy, W. An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int. J. Non-Linear Mech., 21, 279-289 (1986)
[4] Tan, W. C. and Masuoka, T. Stokes first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids, 17, 023101-023107 (2005)
[5] Xue, C. F., Nie, J. X., and Tan, W. C. An exact solution of start up flow for the fractional generalized Burgers' fluid in a porous half space. Nonlinear Analysis: Theory, Methods and Applications, 69, 2086-2094 (2008)
[6] Vieru, D., Fetecau, C., and Fetecau, C. Flow of viscoelastic fluid with the fractional Maxwell model between two side walls perpendicular to a plate. Appl. Math. Comp., 200, 454-464 (2008)
[7] Fetecau, C. and Fetecau, C. Unsteady motions of a Maxwell fluid due to longitudinal and torsional oscillations of an infinite circular cylinder. Proc. Romanian Acad. Series A, 8, 77-84 (2007)
[8] Fetecau, C., Hayat, T., and Fetecau, C. Starting solutions for oscillating motions of Oldroyd-B fluid in cylindrical domains. J. Non-Newtonian Fluid Mech., 153, 191-201 (2008)
[9] Ravindran, P., Krishnan, J. M., and Rajagopal, K. R. A note on the flow of a Burgers' fluid in an orthogonal rheometer. Int. J. Eng. Sci., 42, 1973-1985 (2004)
[10] Hayat, T., Ahmad, G., and Sajid, M. Thin film flow of MHD third grade fluid in a porous space. J. Porous Media, 12, 65-75 (2009)
[11] Hayat, T., Momoniat, E., and Mahomed, F. M. Axial Couette flow of an electrically conducting fluid in an annulus. Int. J. Modern Phys. B, 22, 2489-2500 (2008)
[12] Tan, W. C. and Masuoka, T. Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys. Lett. A, 360, 454-460 (2007)
[13] Mekheimer, Kh. S. and Elmaboud, Y. A. Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. Physica A, 387, 2403-2415 (2008)
[14] Sajid, M. and Hayat, T. Thin film flow of an Oldroyd-8-constant fluid: an exact solution. Phys. Lett. A, 372, 1827-1830 (2008)
[15] Hayat, T., Ahmad, N., and Ali, N. Effects of an endoscope and magnetic field on the peristalsis involving Jeffery fluids. Nonlinear Sci. Num. Simul., 13, 1581-1591 (2008)
[16] Hayat, T., Fetecau, C., and Sajid, M. Analytic solution for MHD transient rotating flow of a second grade fluid in a porous space. Nonlinear Anal. Real World Appl., 9, 1619-1627 (2008)
[17] Hayat, T., Javed, T., and Sajid, M. Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface. Phys. Lett. A, 372, 3264-3273 (2008)
[18] Rajagopal, K. R. Flow of viscoelastic fluids between rotating disks. Theor. Comput. Fluid Dyn., 3, 185-206 (1992)
[19] Hayat, T. and Abelman, S. A numerical study of the influence of slip boundary condition on rotating flow. Int. J. Comput. Fluid Dyn., 21, 21-27 (2007)
[20] Tan, W. C., Pan, W. X., and Xu, M. Y. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech., 38, 645-650 (2003)
[21] Tan, W. C., Xian, F., and Wei, L. An exact solution of unsteady Couette flow of generalized second grade fluid. Chin. Sci. Bull., 47, 1783-1785 (2002)
[22] Tan, W. C. and Xu, M. Y. The impulsive motion of flat plate in a general second grade fluid. Mech. Res. Commun., 29, 3-9 (2002)
[23] Tan, W. C. and Xu, M. Y. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin., 18, 342-349 (2002)
[24] Shen, F., Tan, W. C., Zhao, Y. H., and Masuoka, T. Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid. Appl. Math. Mech. -Engl. Ed., 25, 1151-1159 (2004) DOI 10.1007/BF02439867
[25] Khan, M., Hayat, T., and Asghar, S. Exact solution of MHD flow of a generalized Oldroyd-B fluid with modified Darcy's law. Int. J. Eng. Sci., 44, 333-339 (2006)
[26] Khan, M., Maqbool, K., and Hayat, T. Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space. Acta Mech., 184, 1-13 (2006)
[27] Khan, M., Hayat, T., Nadeem, S., and Siddiqui, A. M. Unsteady motions of a generalized second grade fluid. Math. Comput. Model., 41, 629-637 (2005)
[28] Hayat, T., Khan, M., and Asghar, S. On the MHD flow of fractional generalized Burgers' fluid with modified Darcy's law. Acta Mech. Sin., 23, 257-261 (2007)
[29] Shen, F., Tan, W. C., Zhao, Y. H., and Masuoka, T. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl., 7, 1072-1080 (2006)
[30] Xue, C. and Nie, J. Exact solutions of Stokes' first problem for heated generalized Burgers' fluid in a porous half-space. Nonlinear Anal. Real World Appl., 9, 1628-1637 (2008) |