[1] Schrefler, B. A., Brunello, P., Gawin, D., Majorana, C. E., and Pesavento, F. Concrete at high temperature with application to tunnel fire. Computational Mechanics, 29(1), 43-51 (2002)
[2] Guian, S. K. Fire and life safety provisions for a long vehicular tunnel. Tunnelling and Underground Space Technology, 19(4-5), 316 (2004)
[3] Feist, C., Aschaber, M., and Hofstetter, G. Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire. Finite Elements in Analysis and Design, 45, 958-965 (2009)
[4] Bazant, Z. P. and Kaplan, M. F. Concrete at High Temperatures: Material Properties and Mathematical Models, Longman, Harlow (1996)
[5] Gawin, D., Pesavento, F., and Schrefler, B. A. Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Engrg., 195, 5707-5729 (2006)
[6] Ulm, F. J., Coussy, O., and Bazant, Z. P. The “chunnel” fire, I: chemoplastic softening in rapidly heated concrete. J. Eng. Mech. ASCE, 125(3), 272-282 (1999)
[7] Kalifa, P., Menneteau, F. D., and Quenard, D. Spalling and pore pressure in HPC at high temperatures. Cement and Concrete Research, 30(12), 1915-1927 (2000)
[8] Kodur, V. K. R. and Phan, L. Critical factors governing the fire performance of high strength concrete systems. Fire Safety Journal, 42, 482-488 (2007)
[9] Baggio, P., Majorana, C. E., and Schrefler, B. A. Thermo-hygro-mechanical analysis of concrete. Int. J. Num. Meth. Fluids, 20, 573-595 (1995)
[10] Gawin, D., Majorana, C. E., and Schrefler, B. A. Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Cohes.-Frict. Mater., 4, 37-74 (1999)
[11] Gawin, D., Pesavento, F., and Schrefler, B. A. Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput. Methods Appl. Mech. Engrg., 192, 1731-1771 (2003)
[12] Tenchev, R. and Purnell, P. An application of a damage constitutive model to concrete at high temperature and prediction of spalling. International Journal of Solids and Structures, 42, 6550- 6565 (2005)
[13] Li, X. K., Li, R. T., and Schrefler, B. A. A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis. Int. J. Numer. Anal. Meth. Geomech., 30, 635-681 (2006)
[14] Bary, B., Ranc, G., Durand, S., and Carpentier, O. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures. International Journal of Heat and Mass Transfer, 51, 2847-2862 (2008)
[15] Luzio, G. D. and Cusatis, G. Hygro-thermo-chemical modeling of high performance concrete, I: theory. Cement and Concrete Composites, 31, 301-308 (2009)
[16] Ponta, S. D., Meftahb, F., and Schrefler, B. A. Modeling concrete under severe conditions as a multiphase material. Nucl. Eng. Des., 24(3), 562-572 (2011)
[17] Harmathy, T. Z. Effect of Moisture on the Fire Endurance of Building Materials, No. 385, ASTM, Philadelphia, 74-95 (1965)
[18] Anderberg, Y. Cracking phenomena of HPC and OC. International Workshop on Fire Performance of High-Strength-Concrete, NIST (eds. Phan, L. T., Carino, N. J., Duthinh, D., and Garboczi, E.), National Institute of Standards and Technology, Gaithersburg, MD, 69-73 (1997)
[19] Schrefler, B. A., Khoury, G. A., Gawin, D., and Majorana, C. E. Thermo-hydro-mechanical modelling of high performance concrete at high temperatures. Engineering Computations, 19(7), 787-819 (2002)
[20] Thomas, H. R. and Sansom, M. R. Fully coupled analysis of heat, moisture and air transfer in unsaturated soil. ASCE J. Eng. Mech., 121(3), 392-405 (1995)
[21] Nechnech, W., Meftah, F., and Reynouard, J. M. An elasto-plastic damage model for plain concrete subjected to high temperature. Eng. Struct., 24, 597-611 (2002)
[22] Bowen, R. M. Theory of Mixtures, Academic Press, New York (1976)
[23] Lewis, R. W. and Schrefler, B. A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley & Sons, Chichester (1998)
[24] Gawin, D. and Schrefler, B. A. Thermo-hydro-mechanical analysis of partially saturated porous materials. Engrg. Comput., 13, 113-143 (1996)
[25] Gregg, S. J. and Sing, K. S. W. Adsorption, Surface Area and Porosity, Academic Press, London (1982)
[26] ASHRAE Handbook. Fundamentals, ASHRAE, Atlanta (1993)
[27] Gray, W. G. and Schrefler, B. A. Thermodynamic approach to effective stress in partially saturated porous media. Eur. J. Mech. A/Solids, 20, 521-538 (2001)
[28] Harmathy, T. Z. and Allen, W. L. Thermal properties of selected masonry unit concretes. ACI Journal, 70, 132-142 (1973)
[29] Schneider, U. and Herbst, H. J. Permeabilitaet und porositaet von Beton bei hohen temperaturen (in German). Deutscher Ausschuss Stahlbeton, 403, 23-52 (1989)
[30] Furbish, D. J. Fluid Physics in Geology: An Introduction to Fluid Motions on Earth's Surface and Within Its Crust, Oxford University Press, Oxford (1997)
[31] Qin, B., Chen, Z. H., Fang, Z. D., Sun, S. G., Fang, X. W., and Wang, J. Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I. Appl. Math. Mech. -Engl. Ed., 31(12), 1561-1576 (2010) DOI 10.1007/s10483-010-1384-6
[32] Chen, Y. F., Zhou, C. B., and Jing, L. R. Modeling coupled THM processes of geological porous media with multiphase flow: theory and validation against laboratory and field scale experiments. Comput. Geotech., 36(8), 1308-1329 (2009)
[33] Bear, J. Dynamics of Fluids in Porous Media, Dover, New York (1988)
[34] Mikhalyuk, A. V. and Zakharov, V. V. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks. Journal of Applied Mechanics and Technical Physics, 8(2), 312- 318 (1996)
[35] Stefeler, E. D., Epstein, J. S., and Conley, E. G. Energy partitioning for a crack under remote shear and compression. International Journal of Fracture, 120(4), 563-580 (2003)
[36] Xie, H. P., Ju, Y., and Li, L. Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chinese Journal of rock Mechanics and Engineering, 24(17), 3003-3010 (2005)
[37] Lemaitre, J. How to use damage mechanics. Nuclear Engineering and Design, 80(3), 233-245 (1984)
[38] Yang, S. Q., Xu, W. Y., and Su, C. D. Study on the deformation failure and energy properties of marble specimen under triaxial compression. Engineering Mechanics, 24(1), 136-142 (2007) |