[1] Babuska, I. and Osborn, J. E. Eigenvalue problems. Handbook of Numerical Analysis, Vol. II,Finite Element Method (Part I) (eds. Ciarlet, P. G. and Lions, J. L.), North-Holland, Amsterdam,641-787 (1991)
[2] Babuska, I. and Osborn, J. E. Finite element-Galerkin approximation of the eigenvalues andeigenvectors of selfadjoint problems. Math. Comp., 52, 275-297 (1989)
[3] Lin, Q. and Xie, H. Asymptotic error expansion and Richardson extrapolation of eigenvalue approximationsfor second order elliptic problems by the mixed finite element method. Appl. Numer.Math., 59, 1884-1893 (2009)
[4] Lin, Q. Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners.Numer. Math., 58, 631-640 (1991)
[5] Jia, S., Xie, H., Yin, X., and Gao, S. Approximation and eigenvalue extrapolation of Stokeseigenvalue problem by nonconforming finite element methods. Appl. Math., 54, 1-15 (2009)
[6] Chen, H., Jia, S. H., and Xie, H. Postprocessing and higher order convergence for the mixed finiteelement approximations of the eigenvalue problem. Appl. Numer. Math., 61, 615-629 (2011)
[7] Chen, H., Jia, S., and Xie, H. Postprocessing and higher order convergence for the mixed finiteelement approximations of the Stokes eigenvalue problems. Appl. Math., 54, 237-250 (2009)
[8] Huang, P. Z., He, Y. N., and Feng, X. L. Numerical investigations on several stabilized finiteelement methods for the Stokes eigenvalue problem. Math. Probl. Eng., 2011, 1-14 (2011)
[9] Chen, W. and Lin, Q. Approximation of an eigenvalue problem associated with the Stokes problemby the stream function-vorticity-pressure method. Appl. Math., 51, 73-88 (2006)
[10] Mercier, B., Osborn, J., Rappaz, J., and Raviart, P. A. Eigenvalue approximation by mixed andhybrid methods. Math. Comput., 36, 427-453 (1981)
[11] Xu, J. and Zhou, A. H. A two-grid discretization scheme for eigenvalue problems. Math. Comput.,70, 17-25 (2009)
[12] Yin, X., Xie, H., Jia, S., and Gao, S. Asymptotic expansions and extrapolations of eigenvaluesfor the Stokes problem by mixed finite element methods. J. Comput. Appl. Math., 215, 127-141(2008)
[13] Lovadina, C., Lyly, M., and Stenberg, R. A posteriori estimates for the Stokes eigenvalue problem.Numerical Methods for Partial Differential Equations, 25, 244-257 (2009)
[14] Luo, F., Lin, Q., and Xie, H. Computing the lower and upper bounds of Laplace eigenvalueproblem: by combining conforming and nonconforming finite element methods. Preprint athttp://arxiv.org/abs/1109.5977 (2011)
[15] Hu, J., Huang, Y., and Lin, Q. The lower bounds for eigenvalues of elliptic operators: by nonconformingfinite element methods. Preprint at http://arxiv.org.abs/1112.1145 (2011)
[16] Bochev, P., Dohrmann, C. R., and Gunzburger, M. D. Stabilization of low-order mixed finiteelements for the Stokes equations. SIAM J. Numer. Anal., 44, 82-101 (2006)
[17] Li, J. and He, Y. N. A stabilized finite element method based on two local Gauss integrations forthe Stokes equations. J. Comput. Appl. Math., 214, 58-65 (2008)
[18] Li, J. and Chen, Z. A new local stabilized nonconforming finite element method for the Stokesequations. Computing, 82, 157-170 (2008)
[19] Li, J., He, Y. N., and Chen, Z. X. A new stabilized finite element method for the transientNavier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 197, 22-35 (2007)
[20] Li, J. Investigations on two kinds of two-level stabilized finite element methods for the stationaryNavier-Stokes equations. Appl. Math. Comput., 182, 1470-1481 (2006)
[21] Huang, P. Z., Zhang, T., and Si, Z. Y. A stabilized Oseen iterative finite element method forstationary conduction-convection equations. Math. Meth. Appl. Sci., 35, 103-118 (2012)
[22] Xu, J. A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput., 15,231-237 (1994)
[23] Xu, J. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal.,33, 1759-1778 (1996)
[24] Layton,W. and Tobiska, L. A two-level method with backtracking for the Navier-Stokes equations.SIAM J. Numer. Anal., 35, 2035-2054 (1998)
[25] Ma, F. Y., Ma, Y. C., and Wo, W. F. Local and parallel finite element algorithms based on twogriddiscretization for steady Navier-Stokes equations. Appl. Math. Mech. -Engl. Ed., 28(1), 27-35(2007) DOI 10.1007/s10483-007-0104-x
[26] Qin, X. Q., Ma, Y. C., and Zhang, Y. Two-grid method for characteristics finite-element solutionof 2D nonlinear convection-dominated diffusion problem. Appl. Math. Mech. -Engl. Ed., 26(11),1506-1514 (2005) DOI 10.1007/BF03246258
[27] Wang, C., Huang, Z. P., and Li, L. K. Two-grid partition of unity method for second order ellipticproblems. Appl. Math. Mech. -Engl. Ed., 29(4), 527-533 (2008) DOI 10.1007/s10483-008-0411-x
[28] Zhang, Y. and He, Y. N. A two-level finite element method for the stationary Navier-Stokesequations based on a stabilized local projection. Numer. Meth. Part. Differ. Equ., 27, 460-477(2011)
[29] Ervin, V., Layton, W., and Maubach, J. A posteriori error estimators for a two-level finite elementmethod for the Navier-Stokes equations. Numer. Meth. Part. Differ. Equ., 12, 333-346 (1996)
[30] He, Y. N. and Li, K. T. Two-level stabilized finite element methods for the steady Navier-Stokesproblem. Computing, 74, 337-351 (2005)
[31] He, Y. N. and Wang, A. W. A simplified two-level method for the steady Navier-Stokes equations.Comput. Methods Appl. Mech. Engrg., 197, 1568-1576 (2008)
[32] Shang, Y. Q. and Luo, Z. D. A parallel two-level finite element method for the Navier-Stokesequations. Appl. Math. Mech. -Engl. Ed., 31(11), 1429-1438 (2010) DOI 10.1007/s10483-010-1373-7
[33] Becker, R. and Hansbo, P. A simple pressure stabilization method for the Stokes equation. Commun.Numer. Meth. Engrg., 24, 1421-1430 (2008)
[34] Hecht, F., Pironneau, O., Hyaric, A. L., and Ohtsuka, K. FreeFEM++, Version 2.3-3 (2008)Software avaible at http://www.freefem.org
|