[1] A. K. Noon Hybrid analytical teehniUUe for nonlinear analysis of structures,AIAA J.,23(1985).938-946.
[2] J.F.Geer, A hybrid perturbation-Galerhin method for differential equations containing parameters, Appl. Mech.Rev.,42.11(2)(1989)
[3] A. K. Noor, Recent advances in reduction problems for nonlinear problems, Computers and Structures.13(1981).31-44.
[4] A. K. Noor, C. M.Andersen and J.M,Peters, Reduced basis technique for collapse analysis of shell.AIAA J.,19(1981).393-397.
[5] A. K. Noor and J. M.Peters, Bifurcation and post-buckling analysis of laminated composite plates via reduced basis technique, Comp. Meth.Appl.Mach.Eng.,29(1981)271-295.
[6] A. K. Noor and J. M.Peters, MultiPle-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates, Int. J.Num.Meth.Eng.,19(1983).1783-1803.
[7] A. K. Noor and J. M.Peters. Resents adv,mces in reduction methods for instability analysis of structures, Computers and Structure.10(1983),.67-80.
[8] A. K. Noor and J. M.Peters, Reduced basis technidue for nonlinear analysis of structures,.AIAA J., 18(1980), 455-462.
[9] A. K. Noor and C. D. Balch. hybrid perturbation Bubnov-Galerkin technique for nonlinear thermal analysis, AIAA J.,22(1984).287-294.
[10] A. K. Noor. C. D. Balch and M.A. Shibut. Reduction methods for nonlinear steady state thermal analysis, Int. J. Num. Meth. Eng., 20(1984), 1323-1348.
[11] J. F. Geer and C. M.Anderson,.A hybrid perturbation Galerkin technique with applications to slender body theory.SIAM J.Appl.Meth.,49(1989).344-356.
[12] J. F. Geer and C. M.Anderson,,A hybrid perturbation Galerkin method which combines mutiple expansions.NASA Langley Research Center ICASE Report.89(8)(1989).
[13] Shi Zhongei, A finite spline element method.Computer and Methemants 1(1979).50-72(in Chinese) |