[1] Medri G. A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J]. Transactions of the ASME, 1982,26(104): 26-28.
[2] Ambartsumyan S A. Elasticity Theory of Different Modulus[M]. WU Rui-feng, ZHANG Yun-zhen transl. Beijing: China Railway Publishing House, 1986. (Chinese version)
[3] Srinivasan R S, Ramachandra L S. Large deflection analysis of bimodulus annular and circular plates using finite elements[J]. Computers & Structures, 1989,31(5): 681-691.
[4] Srinivasan R S, Ramachandra L S. Axisymmetric buckling and post-bucking of bimodulus annular plates[J]. Eng Struct, 1989,11(7):195-198.
[5] ZHANG Yun-zhen, WANG Zhi-feng. The finite element method for elasticity with different moduli in tension and compression[J]. Journal of Computed Structural Mechanics and Applications, 1989,6(1): 236-246. (in Chinese)
[6] Papazoglou J L, Tsouvalis N G, Mechanical behaviour of bimodulus laminated plates[J]. Composite Structures, 1991,17(1): 1-22.
[7] YANG Hai-tian, WU Rui-feng, YANG Ke-jian, et al. Solution to problem of dual extension compression elastic modulus with initial stress method[J]. Journal of Dalian University of Technology, 1992, 32(1):35-39. (in Chinese)
[8] TSENG Yi-ping, LEE Cheng-tao. Bending analysis of bimodular laminates using a higher-order finite strip method[J]. Composite Structures, 1995,30(4): 341-350.
[9] YE Zhi-ming. A new fmite element formulation for planar elastic deformation[J]. Internat J for Numerical Methods in Engineering, 1997,14(40): 2579-2592.
[10] TSENGYi-ping,JIANGYu-ching. Stress analysis of bimodular laminates using hybrid stress plate elements[J]. International Journal of Solids Structures, 1998,35 (17): 2025-2028.
[11] YE Zhi-ming, YU Huang-ran, YAO Wen-juan. A finite element formulation for different Young' s modulus when tension and compression loading[A]. In:Jin Ho Kwak Ed. Com2Mac Conference on Computational Mathematics[C]. South Korea: Pohang University of Science and Technology, 2001,2-5.
[12] Raffaele Zinno, Fabrizio Greco. Damage evolution in bimodular laminated composites[J]. Composite Structures, 2001,53(4): 381-402.
[13] Gao X-L, Li K, Mall S. A mechanics-of-materials model for predicting Young' s modulus of damaged woven fabric composites involving three damage modes[J]. International Journal of Solids and Structures, 2003,40(4): 981-999.
[14] YAO Wen-juan, YE Zhi-ming. Analytical solution of bending compression colume using different tension compression modulus[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(9):983-993. |