[1] Deeg W E F. The analysis of dislocation, crack and inclusion problems in piezoelectric solids[D]. Ph D thesis. Stanford University, 1980.
[2] Pak Y E. Crack extension force in a piezoelectric material[J]. Journal of Applied Mechanics,1990, 57(4):647-653.
[3] Pak Y E. Linear electro-elastic fracture mechanics of piezoelectric materials[J]. International Journal of Fracture, 1992,54(1):79-100.
[4] Sosa H A, Pak Y E. Three-dimensional eigenfunction analysis of a crack in a piezoelectric ceramics[J]. International Journal of Solids and Structures, 1990:26(1):1-15.
[5] Sosa H A. Plane problems in piezoelectric media with defects[J]. International Journal of Solids and Structures, 1991,28(4):491-505.
[6] Sosa H. On the fracture mechanics of piezoelectric solids[J]. International Journal of Solids and Structures, 1992,29(8):2613-2622.
[7] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics[J]. Journal of Mechanics and Physics of Solids, 1992,40 (5): 739-765.
[8] Pack S B, Sun C T. Fracture criteria for piezoelectric ceramics[J]. Journal of American Ceramics Society, 1995,78(7): 1475-1480.
[9] Zhang T Y, Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. International Journal of Solids and Structures, 1996,33(5):343-359.
[10] Gao H, Zhang T Y, Tong P. Local and global energy rates for an elastically yielded crack in piezoelectric ceramics[J]. Journal of Mechanics and Physics of Solids, 1997,45 (4): 491-510.
[11] WANG Biao. Three dimensional analysis of a flat elliptical crack in a piezoelectric material[J].International Journal of Engineering Science, 1992,30 (6): 781-791.
[12] Narita K, Shindo Y. Scattering of Love waves by a surface-breaking crock in piezoelectric layered media[J]. JSME International Journal, Series A, 1998,41(1):40-52.
[13] Nadta K, Shindo Y. Scattering of anti-plane shear waves by a finite crack in piezoelectric laminates[J]. Acta Mechanica, 1999,134(1):27-43.
[14] Zhou Z G, Wang B, Cao M S. Analysis of two collinear cracks in a piezoelectric layer bonded to dissimilar half spaces subjected to anti-plane shear[J]. European Journal of Mechanics, A/Solids, 2001,20(2):213-226.
[15] Yu S W, Chen Z T. Transient response of a cracked infinite piezoelectric strip under anti-plane impact[J]. Fatigue and Engineering Materials and Structures, 1998,21(4): 1381-1388.
[16] Zhang T Y, Hack J E. Mode-Ⅲ cracks in piezoelectric materials[J]. Journal of Applied Physics, 1992,71(9):5865-5870.
[17] McMeeking R M. On mechanical stress at cracks in dielectrics with application to dielectric breakdown[J]. Journal of Applied Physics, 1989,62 (11): 3116-3122.
[18] Suo Z. Models for breakdown-resistant dielectric and ferroelectric ceramics[J]. Journal of the Mechanics and Physics of Solids, 1993,41(6): 1155-1176.
[19] Dunn M L. The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids[J]. Engineering Fracture of Mechanics, 1994,48(1):25-39.
[20] Zhang T Y, Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. International Journal of Solids and Structures, 1996,33 (5):343-359.
[21] Sosa H, Khutoryansky N. Transient dynamic response of piezoelectric bodies subjected to internal electric impulses[J]. International Journal of Solids and Structures, 1999,36(9):5467-5484.
[22] Soh A K, Fang D N, Lee K L. Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading[J]. European Journ al of Mechanics, A/ Solid, 2000,19 (6): 961-977.
[23] Morse P M, Feshbach H. Methods of Theoretical Physics[M]. New York: McGraw-Hill, 1958, 1, 828-930.
[24] Gradshteyn I S, Ryzhik I M. Table of Integral, Series and Products[M].New York:Academic Press, 1980,1035-1037.
[25] Erdelyi A. Tables ofIntegral Transforms[M].Vol 1. New York:McGraw-Hill,1954,34-89.
[26] Amemfiya A, Taguchi T. NumericalAnalysis and Fortran[M].Tokyo:Maruzen, 1969, 105-123.
[27] Itou S. Three dimensional waves propagation in a cracked elastic solid[J]. Journal of Applied Mechanics, 1978,45 (5): 807-811.
[28] Zhou Z G, Bai Y Y, Zhang X W. Scattering of harmonic shear waves by a finite crack by using the non-local theory[J]. International Journal of Engineering Science, 1999,37 (5): 609-620.
[29] Zhou Z G, Bai Y Y, Zhang X W. Two collinear Griffith cracks subjected to unitomm tension in infinitely long strip[J]. International Journal of Solids and Structures, 1999,36 (36): 5597-5609.
[30] Zhou Z G, Han J C, Du S Y. Investigation of a Griffith crack subject to anti-plane shear by using the non-local theory[J]. International Journal of Solids and Structures, 1999,36(26):3891-3901.
[31] Zhou Z G, Wang B, Du S Y. Scattering of harmonic anti-plane shear waves by a finite crack by using the non-local theory[J]. International Journal of Fracture, 1998,91(1): 13-22.
[32] Zhou Z G, Zhang X W, Bai Y Y. Investigation of two Griffith cracks subject to unitorm tension by using the non-local theory[J]. International Journal of Engineering Science, 1999,37 (13): 1709-1722.
[33] Zhou Z G, Shen Y P. Investigation of the scattering of harmonic shear waves by two collinear craclks using the non-local theory[J]. Acta Mechanica, 1999,135(3): 169-179.
[34] ZHOU Zhen-gong, WANG Biao. Investigation of a Griffith crack subjected to uniform tension using the non-local theory by a new method[J]. Applied Mathematics and Mechanics (English Edition),1999,20(10):1099-1107. |