[1] Jaff B, Cook W R, Jaff H. Piezoelectric Ceramic[M]. New York: Academic Press, 1971. [2] Chueng H T, Kim H G. Characteristics of domain in tetragonal phase PZT ceramics[J]. Ferroelectrics, 1987, 76:327-333. [3] Zenon B. Optical microscopic mapping of the domain structure of BaTiO3 Microcrystals[J]. Ferro electrics, 1994, 157:13-18. [4] CAO Heng-chu, Evans A G. Nonlinear deformation of ferroelectric ceramics[J]. J Am Ceram Soc, 1993, 76(4): 890-896. [5] Ansgar B, Schaufele, et al. Ferroelastic properties of lead zirconate titanate ceramics[J]. J Am Ceram Soc, 1996, 79(10): 2637-2640. [6] Zhang Q M. Change of the weak-field properties of Pb(ZrTi)O3 piezoceramics with compressive uniaxial stress and its links to the effect of dopants on the stability of the polarizations in the materials[J]. J Mater Res, 1997, 12(1): 226-234. [7] Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model[J]. Acta Metall Mater, 1995, 43(5): 2073-2084. [8] Hwang S C. The simulation of switching in polycrystalline ferroelectric ceramics[J]. J Appl Phys, 1998, 84(3): 1530-1540. [9] Cheng J, Wang B, Du S. Effective electroelastic properties of polycrystalline ferroelectric ceramic predicted by a statistical model[J]. Acta Mechanica, 1999, 138(3-4): 163-175. [10] Li J, Weng G J. A theory of domain switch for the nonlinear behavior of ferroelectrics[J]. Proc R Soc Lond, A, 1999, 45: 3493-3511. [11] Pohanka R C. Effect of the phase transformation on the fracture behavior of BaTiO3[J]. J Am Ce ram Soc, 1978, 61(1-2): 72-75. [12] Pisarenko G G. Anisotropy of fracture toughness of piezoelectric ceramic[J]. J Am Ceram Soc,1985, 68(5): 259-265. [13] Lynch C S. Crack growth in ferroelectric ceramics driven by cyclic polarization switching[J]. J Intl Mater Sys, 1995, 6:191-198. [14] Cook, RF. Fracture of ferroelectric ceramics[J]. Ferroelectrics, 1983, 50: 267-272. [15] Pak Y E. Linear electro-elastic fracture mechanics of piezoelectric materials[J]. International J Fracture, 1992, 54:79-100. [16] ZHANG Tong-yi, TONG Pin. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. Int J Solids Structures, 1996, 33(3): 343-359. [17] Suo Z. Fracture mechanics for piezoelectric ceramics[J]. J Mech Phys Solids, 1992, 40(4): 739-765. [18] Kumar S. Energy release rate and crack propagation in piezoelectric materials: Part Ⅰ: Mechani cal/electrical load[J]. Acta Mater, 1997, 45(2): 849-857. [19] CHAO Lu-ping, HUANG Jin-hui. Fracture criteria for piezoelectric materials containing multiple crack[J]. JAppl Phys, 1999, 85(9): 6695-6703. [20] WANG Biao. Three-dimensional analysis of a flat elliptical crack in a piezoelectric material[J].Int J Engng Sci, 1992, 30(6):781-791. [21] Yang W, Zhu T. Switching-toughening of ferroelectrics subjected to electric fields[J]. J Mech Phys Solids, 1998, 46(2): 291-311. [22] Barnett D M, Lothe J. Dislocat ions and line charges in anisotropic piezoelectric insulators[J]. Phys Status Solidi, B, 1975, 67: 105-117. [23] Mura T. Micromechanics of Defects in Solids[M]. Boston: Martinus Nijhoff, 1982. [24] Mori T, Tanaka K. Average stress in the matrix and average energy of materials with misfitting in clusion[J]. Acta Metall, 1973, 21:571-574. [25] Merz Walter J. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness[J]. J Appl Phys, 1956,27(8): 938-943. [26] WANG Biao. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J]. Int J Solids Structures, 1992, 29(3): 293-308. |