[1] De Vault R, Ladas G, Schultz S W. Onthe recursive sequence xn+1 = (A/xnp) + B/(xn-1q)[A].In: Proceedings of the Second International Conference on Difference Equations[C]. Basel: Gorden and Breach Science Publishers, 1996. [2] Philos Ch G, Purnaras I K, Sficas Y G. Global attractivity in a nonlinear difference equation[J]. Appl Math Comput, 1994,62: 249-258. [3] Ladas G. Open problems and conjectures[A]. In: Proceedings of the First International Confer ence on Difference Equations[C]. Basel: Gorden and Breach Science Publishers, 1995,337-349. [4] Arciero M, Ladas G, Schultz S W. Some open problems about the solutions of the delay difference equation xn+1 = A/(xn2) + 1/(xn-kp)[J]. In: Proceedings of the Georgian Academy of Science Mathematics, 1993,1: 257-262. [5] Brand L. A sequence defined by a difference equation[J]. Amer Math Monthly, 1995, 62: 489-492. [6] De Vault R, Kocic V L, Ladas G. Global stability of a recursive sequence[J]. Dynamics Systems and Application s, 1992,1:13-21. [7] Ladas G. Open problems and conjectures[J]. Journal of Different Equations and Applications, (Recevied June 3, 1996). [8] LI Xian-yi, JIN Yin-lai. An answer to G. Ladas' open problem[J]. Journal of Mathematics, 2002,22(1):50-52. (in Chinese) [9] LI Xian-yi. Some properties for the solutions of a kind of nonlinear delay difference equations[J].Mathematica Applicata, 2000,13(1): 27-30. (in Chinese) [10] Kocic V L, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Ap plications[M]. Dordrect: Kluwer Academic Publishers, 1993. |