[1] Ito K, McKean H P, Jr. Diffusion Processes and Their Sample Paths[M]. New York: Springer-Verlag,1965. [2] Karlin S, Taylor H M. A Second Course in Stochastic Processes[M]. New York: Academic Press,1981. [3] Liu Xianbin. Bifurcation behavior of sto chastic mechanics system and its variational method [ D ]. Ph. D. Thesis. Chengdu: So uthw est Jiaotong University, 1995. ( in Chinese) [4] Liu Xianbin, Chen Qiu, Chen Dapeng. The researches on the stability and bifurcation of nonlinear stochastic dynamical sy stem s[ J]. Advances in Mechanics, 1996, 26( 4): 437~452. ( in Chinese) [5] Liu Xianbin, Chen Qiu, Sun Xunfang. On co-dimension 2 bifurcation system excited parametrically by white noise[ J]. Acta Mechanica Sinica, 1997, 29( 5): 563~ 572. ( in Chinese) [6] Zhu Weiqiu. Stochastic Vibration [ M ]. Beijing: Science Press, 1992. ( in Chinese) [7] Lin Y K, Cai G Q. Stochastic stability of nonlinear systems[J]. Int J Nonlinear Mech,1994,29(4):539~555. [8] Ariaratnam S T, Xie W C. Lyapunov exponents and stochastic stability of two-dimensional parametrically excited random systems[J]. ASME J Appl Mech,1993,60(5):677~682. [9] Arnold L, Wihstutz V. Lyapunov Exponents[M]. Lecture Notes in Mathematics,1186,Berlin: Springer-Verlag,1986. [10] Arnold L, Papanicolaou G, Wihstutz V. Asympototic analysis of the Lyapunov exponents and rotation numbers of the random oscilltor and applications[J]. SIAM J Appl Math,1986,46(3):427~450. [11] Liu Xianbin, Chen Dapang, Chen Qiu. On the max imal Lyapunov exponent for a real noise parametrically excited co-dimension tw o bifurcation system (Ⅰ) [ J]. Applied Mathematics and Mechanics ( English Ed ), 1999, 20( 9): 967~ 978. |