Liu Rongwan;Fu Jingli. LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONCONSERVATIVE NONHOLONOMIC SYSTEMS IN PHASE SPACE. Applied Mathematics and Mechanics (English Edition), 1999, 20(6): 635-640.
[1] Noether A E.Invariant variations problem[J].Gêttinger Nachrichten,Math ematisch-Physicalishe Klasse,1918,2:235~257. [2] Mei Fengxiang,Liu Duan,Luo Yong.Advanced Analytical Mechanics[M].Beijing:Beijing University of Science and Technology Press,1991.(in Chinese) [3] Li Ziping.Classical and Quantum Constrained Systems and Their Symmetrical Properties[M].Beijing:Beijing Industrial University Press,1993.(in Chinese) [4] Liu Duan.Noether.s theorem and its inverse of nonholonomic nonconservative dynam icalsystem s[J].Science in China(Series A),1990,34(4):419~429. [5] Lutzky M.Dynamical symmetries and conserved quantities[J].J Phy A,Math Gen,1979,12(7):973~981. [6] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989. [7] Zhao Yueyu.Conservative quantities and Lie.s symmetries of nonconservative dynam icalsystems[J].Acta Mechanica Sinica,1994,26(3):380~384.(in Chinese) [8] Santilli R M.Foundations of Theoretical Mechanicsò[M].New York:Springer-Verlag,1983.