[1] A. I. Lur'e, Analytical Mechanics, Moscow(1961), 426~436.
[2] Liu Guilin, Qiao Yongfen, et al., Relative motion dynamics of variable massnonholonomic mechanics system, Acta Mechanica Sinica, 21, 6(1989), 742~748.(inChinese).
[3 ] Luo Shackal, Higher-order,Gibbs-Appell method of variable Inass system in noninertialreference frames, Huang-huai Journal, 7, 3(1991), 11~21.(in Chinese).
[4] Luo Shackal, The B-H equations of variable mass higher-order nonholonomic system' innoninertial reference frames, Chinese Sol'ence Bulletin, 37, 10(1992), 878~880.(inChinese).
[5] R. Van Dooren, Generalized methods for nonholonomic systems with application invarious fields pf class mechanics, Proc. 14th TUTAM Congress, Delft(1976), 373~391.
[6] V. V. Rumjantsev and A. S. Sumbatov, On the probiem of a generalization of HamiltonJacobi method for nonholonomic system, ZAMM, 58(1978), 477~481.
[7] B. Vujanovic, On a gradient method in nonconservative mechanics system, ActaMechanica, 34(1979), 167~169.
[8] B. Vujanovip, On the integration of the nonservative Hamiltion dynamics equations, In t.J. Engng. Sci., 19, 12(1981), 1739~1741.
[9] B. Vujanovic, A field method and its application to the theory of vibrations, Int. J.Nonlinear Mech., 19(1989), 383~396.
[10] Mei Fengxiang, Ativances in integration method for mechanics of nonholonomicsystems, Advances in Mechanics, 21, 1(1991), 83~95.
[11] Met Fengxiang, A method of integration of nonholonomic nonconservative systems,Proc. ICDVC, Peking University Press(1990), 653~658.
[12] Mei Fengxiang, A field method for solving the equations of motion of nonholonomicsystems, Acta Mechanica Sinica, 5, 3(1989), 260~268. |