Applied Mathematics and Mechanics (English Edition) ›› 2007, Vol. 28 ›› Issue (5): 573-580 .doi: https://doi.org/10.1007/s10483-007-0502-1

• Articles • Previous Articles     Next Articles

Nonlinear vibration of corrugated shallow shells under uniform load

YUAN Hong, LIU Ren-huai   

  1. Institute of Applied Mechanics, Jinan University, Guangzhou 510632, P. R. China
  • Received:2006-02-14 Revised:2007-03-09 Online:2007-05-18 Published:2007-05-18
  • Contact: YUAN Hong

Abstract: Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential
equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells

Key words: corrugated shells, spherical shells, Greens function, integral equation, nonlinear vibration

2010 MSC Number: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals