[1] Shen Hui-chuan,The fission of spectrum line of monochoromatic elastic wave,Appl.Math.Mech.,5,4(1984),1509-1519.
[2] Shen Hui-chuan,General solution of elastodynamics,Appl.Math.Mech.,6,9(1985),853-858.
[3] Shen Hui-chuan,The solution of deflection of elastic thin plate by the joint action of dynamical lateral pressure,force in central surface and external field on the elastic base,Appl.Math.Mech.,5,6(1984).1791-1801.
[4] Shen Hui-chuan,The relation of von ká rmán equation for elastic large deflection problem and Schrödinger equation for quantum eigenvalues problem,Appl.Math.Mech.,6,8(1985),761-775.
[5] Shen Hui-chuan,The Schrödinger equation of thin shell theories,Appl.Math.Mech.,6 10(1985),957-973.
[6] Lehnitzky,S.G.,Anisotropic Plates,National Tech.(1975).(in Russian).
[7] Zhou Ci-qing,Nonlinear bendings for the orthotropic rectangular thin plates under various supports,Appl.Math.Mech.,5,3(1984).
[8] Andreeva,L.E.,Calculation of goffer membrane as anisotropic plate,Engineer Vol.,21(1955).(in Russian).
[9] Andreeva,L.E.,Elastic Element Tool,Mech.Press,Moscow(1962).(in Russian).
[10] Burmistrov,E.F.,Symmetric bending for membrane with non-identical or identical orthogonality under large pressure and non-equilibrium temperature field,Engineer Vol.,27(1960).(in Russian).
[11] Feodosiev,V.E.,Elastic Elements in Precision,Instruments,National Defence Press(1949).(in Russian).
[12] Akasaka,Takashi,On the elastic properties of the corrugated diaphragm,J.Japan Society of Aero.Engi.,3(1955),279-288. (in Japanese).
[13] Kubo,The properties of corrugated diaphragm,Measure,10,1(1960).(in Japanese).
[14] Liu Ren-huai,Feature relation for corrugated spherical plates,Acta Mechanica Sinica,1(1978),47-52. (in Chinese).
[15] Liu Ren-huai,Feature relationship for corrugated spherical plates with smooth centre,J.of China University of Science and Technology,9,2(1979),75-86. (in Chinese).
[16] Liu Ren-huai,Nonlinear bending of corrugated annular plates,Scientia Sinica,27,6(1984),640-647.
[17] Chen Shan-lin,Elastic behavior of uniformly loaded circular corrugated plate with sineshaped shallow waves in large deflection, Appl.Math.Mech.,1,2(1980).
[18] Zhang Qi-hao,Study on feature relation for corrugated spherical plates,Mechanics and Practices,2,3(1980),64-66. (in Chinese).
[19] Chen Yen-han,Large deformation solution of stiffened plates by a mixed finite element method,Appl.Math.Mech.,5,1(1984).
[20] Chien Wei-zang,Theory of circumferentially rib-reinforced monocoque cylinder with arbitrary cross-section,J.Shanghai University of Technology,1(1984),1-30. (in Chinese).
[21] Chien Wei-zang,The asymptotic solution of circumferentilly rib-reinforced monocoque cylinder with arbitrary crosssection(especally elliptic section) under uniformly distributed external pressure,J.Shangai University of Technology,2(1984),1-40. (in Chinese).
[22] Naleszkiewicz,J.,The appearance of quantum characteristic in elastic instability,Bulletin Poland Acad.Book,3,2(1955),59-72. (in Russian).
[23] Synge,J.L.and Chien Wei-zang,The intrinsic theory of elastic shells and plates,Appl.Mech.,Th.von Kármán Annivers Vol.(1941),103-120.
[24] Chien Wei-zang,Variational Methods and Finite Elements,(I),Science Press(1980).(in Chinese).
[25] Chien Wei-zang,Incomptible Elements and Generalized Vartational Principles,Science Press(1982).
[26] Chien Wei-zang,Incompatible Plate Elements Based upon Generalized Variational Principle.ed.by S.N.Atluri,R.H.Gallagher and O.C.Zienkiewicz,John Wiley and Sons,New York(1983).
[27] Chien Wei-zang,Further study on generalind variational principles in elasticity-discussion with Mr.Hu Hai-chang on the problem of equivalent theorem,Acta Mechanica Sinica,4(1983),325-340. (in Chinese).
[28] Chien Wei-zang,Also on generalied variational principle and non-conditional variational principle-anwers to Mr.Hu Hai-chang concerning the above problems,Acta Mechanica Solida Sinica,3(1984),461-468. (in Chinese).
[29] Chien Wei-zang,Generalied Variational Principles.Intellectual Press,Shanghai(1985).(in Chinese.).
[30] Taniuti, T. and K. Nishihara, Nonlinear Waves, Pitman (1983).
[31] Dirac, P.A.M., The Principle of Quantum Mechanics, oxford (1958).
[32] Fliigge, S., Practical Quantum Mechanics, Springer-Verlag (1974).
[33] Van der Waerden, B.L., Group Theory and Quantum Mechanics, Springer-Verlag (1974).
[34] Shen Hui-chuan, On the general equations, double harmonic equation and eigen-equation in the problems of ideal plasticity, Appl. Math. Mech., 7, 1 (1986), 65-78.
[35] Shen Hui-chuan, The general solution for ideal plasticity, Nature J., 8, 11 (1985), 846-848. (in Chinese)
[36] Novoshelov, V.V., Foundation of Nonlinear Theory of Elasticity, National Tech., Moscow (1948). (in Russian)
[37] Timoshenko, S.P. and J.M. Gere, Theory of Elastic Stability, McGraw-Hill (1961).
[38] Timoshenko, S.P. and S. Woinowsky-Krieger, Theory of Plates and Shells, New York (1940).
[39] Vlasov, V.Z., General Theory of Shells, National Tech., Moscow (1,949). (in Russian).
[40] Volmir, A.S., Pliable Pbtes and Pliable Shells, National Tech., Moscow (1956). (in Russian).
[41] von Kaman, Th., Encyklopadie der Math. Wissonschaften, Bd. IV, 4 (1910), 349.
[42] Ablowitz, M.J., D.J. Kaup, A.C. Newell and H. Segur, Method for solving the sine-Gordon equation, Phys. Rev. Letters, 30 (1973), 1262-1264.
[43] Ablowitz, M.J., D.J. Kaup, A.C. Newell and H. Segur, Nonlinear evolution equations of physical signal icance, Phys. Rev. Letters, 31 (1973), 125-127.
[44] Eckhaus, W. and A. Van Harten, The Inverse Scattering Trasformation and the Theory of Solitons, North-Holland, Amsterdam (1981).
[45] Zakharov, V.E., S.V. Manakov, S.P. Novikov and L.P. Pitaevsky, Theory of Soliton, Phys. Math. Press (1980). (in Russian).
[46] Kato, Yusuke, The Inverse Problem in Scattering Theory, Iwananii, Tokyo (1980). (in Japanese).
[47] Kato, Yusuke, Inverse scattering method for initial value problem of the nonlinear equation of evolution, Suppf. of ProR of Theor. Pft-s.,55(1974), 247-283.
[48] Miura, R.M., Korteweg-de Vries equation and generalizations, (I) A remarkable explicit nonlinear trasformation, J. Math. Phys.,,(1968), 1202-1204.
[49] Miura, R.M., C.R. Gardner and M.D. Kruskal, Kortewegde Vries equation and generalizations, (II) Existence ofconservation taws and constants ofmotion, J. Math. Phys., 9 (1968), 1204-1209.
[50] Su, C.H. and C.S. Gardner, Korteweg-de Vries equation and generalizations,(III)Derivation of the Korteweg-de Vries equation and Burgers equation, J. Math. Phys., 10 (1969), 536-539.
[51] Kruskal, M.D., R.M. Miura and C.S. Gardner, Korteweg-de Vries equation and generalizations, (V) Uniqueness and nonexistence of polynomial conservation laws, J. Marh. Phys., 11(1970), 952-960.
[52] Ablowitz, M.J. and A.C. Newell, The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation, J. Muth. Pfy.c..14 (1973), 1277-1284.
[53] Arganorich, Z.S and V.A. Marchenko, The Inver.ce Prohlem of Scatrering Theory, English trans. by B.D. Seckler, Cordon and Breach, New York(1963).
[54] Gardner, C.S., J.M.Greene, M.U. Kruskal and R.M.Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. letters, 19(1967), 1095-1097.
[55] Kaup, D.J. and A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math phys., 19(1978). 798-801.
[56] Lamb, G.L.,On the connection between lossless propagation and pulse profile, Physica, 66,(1973), 298-314.
[57] Newton, R.G., Scattering Theory of Waves and Particles, McGraw-Hill, New York (1966). |