[1] Zhang, Q. F. and Cui, J. Z. Multi-scale analysis method for combined conduction-radiation heattransfer of periodic composites. Advances in Heterogeneous Material Mechanics, DEStech Publications,Lancaster, 461-464 (2011)
[2] Modest, M. F. Radiative Heat Transfer, 2nd ed., McGraw-Hill, San Diego, 450-453 (2003)
[3] Laitinen, M. T. Asymptotic analysis of conductive-radiative heat transfer. Asymptotic Analysis,29(3), 323-342 (2002)
[4] Griepentrog, J. A. and Recke, L. Linear elliptic boundary value problems with non-smooth data:normal solvability on Sobolev-Campanato spaces. Mathematische Nachrichten, 225(1), 39-74(2001)
[5] Griepentrog, J. A. and Recke, L. Local existence, uniqueness and smooth dependence fornonsmooth quasilinear parabolic problems. Journal of Evolution Equations, 10(2), 341-375 (2010)
[6] Gröger, K. A W1,p-estimate for solutions to mixed boundary value problems for second orderellptic differential equations. Mathematische Annalen, 283(4), 679-687 (1989)
[7] Wu, Z. Q., Yin, J. X., and Wang, C. P. Elliptic and Parabolic Equations, World Scientific Press,Singapore, 105-111 (2006)
[8] Gilbarg, D. and Trudinger, N. S. Elliptic Partial Differential Equations of Second Order, Springer,Berlin, 171-280 (2001)
[9] Cioranescu, D. and Donato, P. An Introduction to Homogenization, Oxford University Press,Oxford, 33-140 (1999)
[10] Fusco, N. and Moscariello, G. On the homogenization of quasilinear divergence structure operators.Annali di Matematica Pura ed Applicata, 146(1), 1-13 (1986)
[11] Avellaneda, M. and Lin, F. H. Compactness method in the theory of homogenization. Communi-cations on Pure and Applied Mathematics, 40(6), 803-847 (1987)
[12] He, W. M. and Cui, J. Z. Error estimate of the homogenization solution for elliptic problems withsmall periodic coefficients on L∞(Ω). Science China Mathematics, 53(5), 1231-1252 (2010)
[13] He, W. M. and Cui, J. Z. A finite element method for elliptic problems with rapidly oscillatingcoefficients. BIT Numerical Mathematics, 47, 77-102 (2007) |