[1] B. Wang Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectricmaterial, Int. J. Solids Struct., 29. 3 (1992). 293~308.
[2] B. Wang. Three-dimensional analysis of a flat elliptical crack in a piezoelectric material,Int. J. Engng. Sci., 30, 6 (1992). 781~701.
[3] S. Y. Du, et al., The general solution of anisotropic piezoelectric materials with an ellipticinclusion. Acta Mech. Sin., 10. 3 (1994), 273~291.
[4] Y. E. Pak. Linear electroelastic fracture mechanics of piezoelectric matenals. Int. J.Fracture. 54 (1992). 79~100.
[5] Z. Suo. et al., Fracture mechanies for piezoelectric ceramics. J. Mech, Phys. Solids. 40, 4(1992), 739~769.
[6] H. Sosa. Plane problems in piezoelectric media with defects, int. J. Solids Struct., 28, 4(1991). 491~505.
[7] J. S. Lee and L. Z. Jiang. A boundary integral fomulation and 2-D fundamentalsolutions for piezoclectrie media. Mech. Res. Commun., 21. 1 (1994), 47~54.
[8] Q. Y. Meng and S. Y. Du. The fundamental solutions of boundary integral equation fora two-dimensional piezoelectric media. Acta. Mech Sol. Sin., 16, 1 (1995). 90~94. (in Chinese)
[9] D. M. Barnett and J. Lothe. Dislocation and line charges in anisotropic piezoelectricinsulators, Phys. Status. Solidi (b). 67 (1975), 105~111.
[10] I. M. Gel f and, M. I. Graev and N. Ya. Vilenkin, Generalized Functions.Vol. 5 Academic Press, New York (1996). |