[1] N. S. Bakhvalov, K optimaizacii metodov resheniya kraevykh zacach pri nalichii pogranichnogo sloya, Zh. Vychisl. Mat. Mat. Fiz., 9 (1969), 841~859.
[2] E. P. Doolan, J. J. H. Miller and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin (1980).
[3] A. M. Il'in, Differencing scheme for a differential equation with a small perameter affecting the highest derivative, Math. Notes. Acad. Sci. USSR, 6 (1969), 569~602.
[4] J. Thomas King, Introduction to Numerical Compulation, McGraw-Hill Inc. (1984).
[5] E. O' Riordan and M. Stynes, An analysis of a superconvergence result for a singularly perturbed boundary value problem, Math. Comp., 46 (1986), 81~92.
[6] J. M. Ortega and W. C. Rheinboldt, Interative Solution qf Nonlinear Equations in Several Variables, lst Ed. Academic Press, New York London (1970).
[7] R. Vulanovic, A uniform numerical method for quasilinear singular perturbation problems without turning points. Computing, 41 (1989), 97~106.
[8] G. I. Shishkin, Raznostnaya skhema na neravnomernoi setke dlya differential nogouravneniya s malym parametrom pri starshei proizvodnoi. Zh. Vychisl. Mat. Mat. Fiz.,23 (1983), 609~619.
[9] M. Stynes and E. O' Riordan, A uniform accurate finite element method for a singular perturbation problem in conservative form. SIAA. J. Numer. Anal., 23, 2 (1986), 369~375.
[10] Sun Qiren. Uniformly convergent diffcrence method for a class of singular perturbation problem of fourth-order quasilinear ordinary differential equation, Proceedings of MMM, Shanghai (1987).
[11] R. Vulanovic. On a numerical solution of a type of singularly perturbed boundary valueproblem by using a special discretization mesh, Zb. Rad. Prir. Mat. Fak. Univ. Novom.sadu Ser. Mat. 13 (1983), 187~201.
[12] Wang Guoying and Chen Minglun. Sccond-order accurate difference method for thesingularly perturbed problem of fourth-order ordinary differential equations, Applied Mathematics and Mechanics(English Edition). 11,5 (1990), 463~468. |