[1] C. Foias. O. Manley and R. Temam, Modelling of the interaction of small and largeeddies in two dimensional turbulent flows, RAIRO Math. Model Numer. Anal., 22(1988), 93~118.
[2] C. Foias, O. Manley, R. Teman and Y. Treve, Asymptic analysis of the Navier-Stokesequations, Physica D, 9 (1983), 157~188.
[3] J. L. Lions, Quelques Methodes de Risolution des Problemes aux Limites Non Lineaires,Dunod, Paris (1969).
[4] M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26(1989), 1139~1157.
[5] B. Nicolaenko. B. Scheurer and R. Temam, Some global dynamical properties of theKuramoto-Sivashinsky equation: nonlinear stability and attractors, Physica D, 16 (1985),155~183.
[6] J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkinmethods, Appl. Anal., 38 (1990), 201~229.
[7] R. Temam, Navier-Slokes Equations, Third edition, North-Holland, Amsterdam, NewYork (1984).
[8] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSFRegional Conference Series in Applied Mathematics, SIAM, Philadelphia (1983).
[9] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Appl.Math. Sci. 68, Springer-Verlag, Berlin, New York (1988).
[10] R. Temam, Varietes innertielles approximatives pour les equations de Navier-Stokesbidimensionnelles, C. R. Acad. Sci., Ser. II, 306 (1988), 399~402.
[11] R. Temam, Induced trajectories and approximate inertial manifolds, RAIRO Math.Model. Nwner. Anal, 23 (1989), 541~561.
[12] R. Temam, Dynamical systems. turbulence and the numerical solution of the NavierStokes equations, in: D. L. Dwoyer and R. Voigt, eds, The Proceedings of the EleventhInternational Conference on Numerical Methods in Fluid Dynamics, Lecture Notes inPhysics, Springer-Verlag (1989).
[13] Wu Yujiang, Studies on the approximate inertial manifolds and the numerical methods,Ady. in Mechanics, 24 (1994)- 145~1 53. (in Chinese)
[14] Wu Yujiang, A nonlinear Galerkin method with variable modes for Kuramoto-Sivashinshyequation: analyse and computation, J. Comput. Math. (to appear).
[15] Z. H. Yang, A. Mahmood and R. S. Ye. Fully discrete nonlinear Galerkin methods forKuramoto -Sivashinsky equation and their error estimates. J. Shanghai University (EnglishEdition), 1 (1997). 20~27. |