[1] Lu Yuguang, Existence and asymptotic behavior of solution to inhomogeneous systemsof gas dynamics with viscosity, Acta Mathematica Scientia, 12, 1 (1992), 51~61.
[2] Lu Yunguang, An asymptotic behavior of solutions for inhomogeneous systems of gasdynamics, Chin. Sci. Bull., 34 (1989), 631.
[3] O. M. Kiselev. Asymptotic solutions of the Cauchy problem of the perturbed Klein-Fock-Gordon equation, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Stekolw. (LOMI) 165(1987), Mat. Vopr. Teor. Rasprostranen, 17 (1987), 115~121. (in Russian)
[4] A. H. J. Cloot and B. M. Herbst, Analytical instability of the Klein Gordon equation,J. Comput. Appl. Math., 21 (1988), 17~26.
[5] C. G. A. Van Der Beek, Normal forms for weakly nonlinear perturbed wave equations,Ph. D Thesis, Delft University of Technology, The Netherlands (1989).
[6] A. L. Shtaras, The averaging method for weakly nonlinear operator equations, Mat. Sb.,134, 2 (1987); Mat. Sb., 62, 1 (1987), 223~242. (English translation)
[7] W. T. Van Horssen and A. H. P Van Der Bungh, On initial boundary value problemsfor weakly semilinear telegraph equations, asymptotic theory and application, AIANAppl. Math., 48, 4 (1988), 719~736.
[8] W. T. Van Horssern, Asymptotics for a class of semilinear hyperbolic equations with anapplication to a problem with a quadratic nonlinearity, Nonlinear Analysis, Theory,Methods and Application, 19. 6 (1992), 510~530.
[9] C. J. Blom and A. H. P. Van Der Burgh, Validity of approximations for time periodicsolutions of a forced nonlinear hyperbolic differential equation, Applicable Analysis, 52,1~4 (1994), 155~176.
[10] R. Bitelaar, The method of averaging in Banach spaces, theory and applications, Ph. Dthesis, Rjksuniversiteit Utrecht (1993).
[11] M. Taylor, Pseudo-differential Operations, Prinaeton University Press (1981).
[12] Bonald B. Guenther and John W. Lee, Partial Differential Equations of MathematicalPhysics and Integral Equations, Prentice Hall (1988). |