[1] B. Budiansky, J. W. Hutchinson, and J. C. Lambropoulos, Continuum theory of dilatanttransformation toughening in ceramics, Im. J. Solids Struct., 19 (1983), 337~355.
[2] I. W. Chen and P. E. Reyes-Morel, Implications of transformation plasticity in ZrO2-contain ceramics: I shear and dilatation effects, J. Am. Ceram. Soc., 69 (1986); 181~189.
[3] P. E. Reyes-morel and I. W. Chen. Transformation plasticity of ZrO2-stabilizedtetragonal zirconia polycrystals: I stress assistance and autocatalysis, J. Am. Ceram. Soc.,71 (1988), 343~353.
[4] K. C. Hwang et al, Acta Mech. Sinica. 23 (1991), 299~308.
[5] Y. G. Ye, et al. A computational modelling of transformation toughening in ceramics,Proc. of Asian Pacific Conf, on Fract. and Strength 93. Tsuchiura, Ibaraki, Japan (1993),671~676.
[6] G. M. Stam. et al. Effects of transformation-induced shear strains on crack growth inzirconia-containing ceramics, Int. J. Solids Struct., 31 (1994), 1923~1948.
[7] F. Z. Li and J. Pan. Plane-strain crack-tip fields for pressure-sensitive dilatant materials,J. Appl. Mech., 57 (1990), 40~49.
[8] D. Bigoni and E. Radi. Mode I crack propagation in elastic-plastic pressuresensitivematerials, Int. J. Solids Struct. , 30 (1993). 899~919.
[9] X. Zhang and Y. G. Ye. Acta Mech. Solida Sinica, 16 (1995).
[10] D. B. Marshall, et al. Crack-tip transformation zone in toughened zirconia, J. Am.Ceram. Soc., 73 (1990). 2659~2666.
[11] R. Narasimhan and A. J. Rosakis. Reexamination of jumps across quasi-staticallypropagating surtace under generalized plane stress in anisotropically hardingelastic-plastic solids. J. Appl. Mech.. 54 (1987 ), 519~524.
[12] P. E. Ponte-Castanade. Asymptotic fields in steady crack growth with linearstrainharding, J. Mech. Phys. Solid. 35 (1987). 227~268. |