[1] J.Caristi.Fixed point theorems for mappings satisfying inwardness conditions, Trans.Amer.Math.Soc., 215 (1976), 241~251.
[2] S.Z.Shi, Equivalence between Ekeland's variational principle and Caristi's fixed pointtheorem, Adran.Math., 16, 2 (1987), 203~206.(in Chinese)
[3] Zhang Shisheng and Luo Qun, Set-valued Caristi's fixed point theorem and Ekeland'svariational principle, Applied Mathematics and Mechamics (English Ed.), 10, 2 (1989).119~121.
[4] Chang Shihsen, Huang Nanjing and Shi Chuan, Set-valued Caristi's theorem inprobabilistic metric spaces, JournaI of Sichuan Univyersiy.Natural Science Edition, 30-1(1993), 12~16.(in Chinese)
[5] Jeong Sheok Ume, Some existence theorems generalizing fixed point theorems oncomplete metric spaces, Math.Japonica, 40, 1(1994), 109~114.
[6] Chang Shihsen and Luo Qun, Caristi's fixed point theorem for fuzzy mappings andEkeland's variatioal principle, Fuzzu Sets and Systems, 64 (1994), 119~125.
[7] S.S.Chang.Yeol Je Cho and Skin Min Kang, Probabilistic Matric Spaces and Nonlmear Operator Theory, Sichuan University Press, Chengdu, P.R.China (1994). |