[1] V. I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trudv Mosk. Mar. Obsce., 19 (1969), 179-210.
[2] R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Eguations, 27 (1978), 320-358.
[3] R. A. Johnson, K. J. Palmer and G. R. Sell, Ergoic properties of linear dynamical systems, SIAM J. Math. .4nal., 18 (1987), 1-33.
[4] S. T. Liao, On characteristic exponents construction of a new Borel set for the multiplicative ergodic theorem for vector fields, Acta Scientiarum Naturalium universitatis Pekinensis, 29(1993), 277-302.
[5] J. Palis and W. Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, (1982).
[6] S. T. Liao, Standard systems of differential equations, Acta Mathematica Sinica, 17(1974), 100-109; 175-196; 270-295. (in Chinese)
[7] S. T. Liao, Notes on a study of vector bundle dynamical systems (I), Applied Mathematics and Mechanics, 16, 9 (1995), 813-823.
[8] Ya. Pesin, Characteristic Lyapunov exonents and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-112.
[9] C. Pugh and M. Shub, Ergedic Attractors, Trans. AMS., 312 (1989), 1-54.
[10] C. Pugh, The C1+x in Pesin theory, Publ. Math. IHES, 59 (1984), 43-161.
[11] H. Fedrer, Geometric aleasure Theory, Springer-Verlag (1969).
[12] V. Nemyskii and V. Stepunov, Qualitative Theory of Differential Equations, Princeton University Press(1960).
[13] P. Wallets, An Introduction to Ergodic Theory, Springer-Verlag (1982). |