[1] R. T. Rockafeller, Convex Analysis, Princeton Univ. Press, Frinceton, NJ. (1970). [2] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland,Amsterdam (1976). [3] F. H. Clarke, Optimisation and Nonsrnooth Analysis, Wiley, New York (1983). [4] J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in banacli space II: Applications, Canad. J. Math., 39 (1978), 428-472. [5] Chang Kungching, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. App!., 80 (1981), 102-129. [6] E. S. Mistakids and P. D. Panagiotopolus, On the approximation of nonmonotone multivalued problems by monotone subproblems, Camput. Methods Appl. Mech. Engrg..114 (1994), 55-76. [7] R. T. Rockafellar. Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math., (1980). 257-280. [8] R. A. Poliquin, Subgradient monotonicify and convex functions, Nonlinear Analysis, 14(1990), 305-317. [9] R. Correa, A. Joffre and L. Thibault, Characterization of lower semicontinuous convex functions,Proc. Amer. Math. Soc.. 116 (1992), 67-72. [10] R. Correa, A Joffre and L. Thibault. Subdifferential monotonicity as characterization of convex functions, Numer. Fcn:ct. Anal. Optimiz., 15(1994), 531-535. [11] D. Zagrodny. Approximate mean value theorem for upper subderivates, Nonlinear Analysis, 12 (1988), 1413-1428. [12] J. M .Borwein and D.Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Marh. Soc.,303. 2(1987), 517-527 [13] V. F. Demyanov and L. V. Vasiler. Nondifferentiable Optimization. Inc. Publications Division, New Fork(1985). |