[1] Oleinik, O. A. and T. D. Ventcel, The first boundary problem and the Cauchy problem for quasi-linear equations of parabolic type, Mat. Sb. N. S., 41, 83(1957), 105-128.
[2] Vishik, M. I. and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Usp. Mat. Nauk, 12(1957), 3-122.
[3] Su Yu-cheng, The Method for Boundary Layer Correction for Singular Perturbation Problem, Shanghai Science and Technology Press(1983).(in Chinese).
[4] Trenogin, V. A., On the asymptotic character of solutions of near-linear parabolic equations with a parabolic boundary layer, Usp. Mat. Nauk, 16, 1(1961). 163-169.
[5] Bakhvalov, N. S., On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. i Mat. Fiz., 9(1969), 841-859.
[6] Shishkin, G. I., Solution of a boundary value problem for an elliptic equation with small parameter multiplying the highest derivatives, ibid, 86, 7(1986), 1019-1031.
[7] Vulanovic, R., On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh, Zb. rad. Prir-mat. Fak. Univ. u Novom Sadu, Ser. Mat., 13(1983), 187-201.
[8] Lees, M., A linear three-level difference scheme for quasilinear parabolic equation, Math. Comp., 20(1966), 516-522.
[9] Dai Wei-zhong and Chen Chuan-dan, A three-level difference scheme for two-dimensional nonlinear parabolic differential equations, Math. Numer. Sinica, 11, 1(1989), 1-9.(in Chinese).
[10] Meek, P. C. and J. Norbury, Two-stage, two-level finite difference schemes for non-linear parabolic equations, IMA J. Numer. Anal., 2(1982), 335-370.
[11] Samarskii, A. A. and V. B. Andreev, Difference Methods for Elliptic Equations, Izdat. Nauka, Moscow(1976). |