[1] Berger, A.E., H.Han and R.B.Kellogg, A priori estimates and analysis of a numerical method for a turning point problem, Math.Comp., 42 (1984), 465-492.
[2] Emeljanov, K.V., A difference scheme for the equation eu″+xa(x)u′-b(x)u=f(x),Inst.Math.Mech., Ural Science Lenter Acad.USSR, 21(1976), 5-18.(in Russian)
[3] Farrell, P.A., Sufficient conditions for the uniform convergence of a difference scheme for singularly perturbed turning problem, SIAM J.Numer.Anal., 25 (188), 618-643.
[4] Liseikin, V.D., On the numerical solution of equations with interior and exterior boundary layers on a non-uniform mesh, Proc.BAIL Ⅲ Conference, J.J.H.Miller, Ed., Boole Prees, Dublin (1984), 68-80.
[5] Veldhuizen, M.V., High order schemes of positive type for singular perturbation problems, Numerical Analysis of Singular Perturbation Problems, P.W.Hemker and J.J.H.Miller (Ed.),London Academic Pr.(1979), 361-381.
[6] Vulanovic, R., A second order uniform numerical method for a turning point problem, Zb.Rad.Prir, Mat.Univ.Novom.Sadu.Ser.Mat., 18, 1 (1988), 17-30. |