[1] Nesliturk, A. I. and Tezer-Sezgin, M. The finite element method for MHD flow at high Hartmann numbers. Comput. Methods Appl. Mech. Engrg., 194(9-11), 1201-1224(2005)
[2] Hsieh, P. W. and Yang, S. Y. A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers. J. Comput. Phys., 228(22), 8301-8320(2009)
[3] Hsieh, P. W., Shih, Y., and Yang, S. Y. A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun. Comput. Phys., 10(1), 161-182(2011)
[4] Hosseinzadeh, H., Dehghan, M., and Mirzaei, D. The boundary elements method for magnetohydrodynamic (MHD) channel flows at high Hartmann numbers. Appl. Math. Model., 37(4), 2337-2351(2013)
[5] Zhang, L., Ouyang, J., and Zhang, X. The two-level element free Galerkin method for MHD flow at high Hartmann numbers. Phys. Lett. A, 372(35), 5625-5638(2008)
[6] Ainsworth, M. and Oden, J. T. A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York (2000)
[7] Verfürth, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner-Wiley, Stuttgart (1996)
[8] Kunert, G. A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes, Ph. D. dissertation, Chemnitz Univesity of Technology (1999)
[9] Kunert, G. A posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math., 86(3), 471-490(2000)
[10] Kunert, G. A posteriori error estimation for convection dominated problems on anisotropic meshes. Math. Method. Appl. Sci., 26(7), 589-617(2003)
[11] Frey, P. J. and Alauzet, F. Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg., 194(48-49), 5068-5082(2005)
[12] Dolejš?, V. Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Visual. Sci., 1(3), 165-178(1998)
[13] Apel, T. Anisotropic Finite Elements:Local Estimates and Applications, Teubner, Stuttgart (1999)
[14] Chen, S. and Xiao, L. Interpolation theory of anisotropic finite elements and applications. Sci. China Ser. A, 51(8), 1361-1375(2008)
[15] Picasso, M. An anisotropic error indicator based on Zienkiewicz-Zhu error estimator:application to elliptic and parabolic problems. SIAM J. Sci. Comput., 24(4), 1328-1355(2003)
[16] Formaggia, L., Micheletti, S., and Perotto, S. Anisotropic mesh adaption in computational fluid dynamics:application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math., 51(4), 511-533(2004)
[17] Kuate, R. Anisotropic metrics for finite element meshes using a posteriori error estimates:Poisson and Stokes equations. Eng. Comput.-Germany, 29(4), 497-505(2013)
[18] Hecht, F., Pironneau, O., Morice, J., Le Hyaric, A., and Ohtsuka, K. Freefem++documentation, version 3.19-1. http://www.freefem.org/ff++(2012)
[19] Hecht, F. Bamg:bidimensional anisotropic mesh generator. http://www-rocq1.inria.fr/gamma/cdrom/www/bamg/eng.htm(1998)
[20] Scandiuzzi, R. and Schrefler, B. FEM in steady MHD duct flow problems. Int. J. Numer. Meth. Engrg., 30(4), 647-659(1990)
[21] Meir, A. Finite element analysis of magnetohydrodynamic pipe flow. Appl. Math. Comput., 57(2), 177-196(1993)
[22] Kay, D. The reliability of local error estimators for convection-diffusion equations. IMA J. Numer. Anal., 21(1), 107-122(2001)
[23] Verfürth, R. A posteriori error estimators for convection-diffusion equations. Numer. Math., 80(4), 641-663(1998)
[24] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., and Copps, K. Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Meth. Engrg., 37(7), 1073-1123(1994)
[25] Chen, H., Chen, S., and Qiao, Z. C0-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math., 124(1), 99-119(2013)
[26] Chen, H. R., Chen, S. C., and Qiao, Z. H. C0-nonconforming triangular prism elements for the three-dimensional fourth order elliptic problem. J. Sci. Comput., 55(3), 645-658(2013)
[27] Chen, H. and Chen, S. Uniformly convergent nonconforming element for 3-D fourth order elliptic singular perturbation problem. J. Comput. Math., 32(6), 687-695(2014) |