Applied Mathematics and Mechanics (English Edition) ›› 2017, Vol. 38 ›› Issue (1): 57-72.doi: https://doi.org/10.1007/s10483-017-2160-6

• Articles • Previous Articles     Next Articles

Matrix description of differential relations of moment functions in structural reliability sensitivity analysis

Tianxiao ZHANG   

  1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Illinois 60607-7022, U. S. A
  • Received:2016-06-15 Revised:2016-08-18 Online:2017-01-01 Published:2017-01-01
  • Contact: Tianxiao ZHANG E-mail:txzhang@uic.edu
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 51135003 and U1234208) and the Major State Basic Research Development Program of China (973 Program) (No. 2014CB046303)

Abstract:

In a structural system reliability analysis that lacks probabilistic information, calculating the numerical characteristics of the state functions, especially the first four moments of the state functions, is necessary. Based on that, the structural system reliability is analyzed with a fourth-order moment method. The reliability sensitivity is required to conduct the differential operation of the numerical characteristic functions. A reliability sensitivity analysis formula is then derived in combination with the relation of the differential operation. Based on the matrix theory and Kronecker algebra, this paper systematically derives a matrix expression of the first four moments of the state functions, and establishes the matrix relation between the first four moments of the state functions and those of the basic random variables. On this basis, a differential operation formula of the first four moments of the state functions is further derived against the first four moments of the basic random variables. The vector relation between the state functions and the multidimensional basic random variables is described by means of the matrix operation to extend the operation method. Finally, a concise and intuitive formula is obtained to explore the inherent essential relation between the numerical characteristics of the state functions and those of the basic random variables, leading to a universal equation for the two kinds of numerical characteristics.

Key words: reliability sensitivity, state function, numerical characteristic, structural system, Kronecker product, reliability analysis, matrix description, functional differential

2010 MSC Number: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals