[1] Fei, P., Yeh, P. H., Zhou, J., Xu, S., Gao, Y., Song, J., Gu, Y., Huang, Y., and Wang, Z. L. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett., 9(10), 3435-3439(2009)
[2] He, J. H., Hsin, C. L., Liu, J., Chen, L. J., and Wang, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater., 19(6), 781-784(2007)
[3] Wang, Z. L. and Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246(2006)
[4] Zhong, Z., Wang, D., Cui, Y., Bockrath, M. W., and Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science, 302(5649), 1377-1379(2003)
[5] Bai, X., Gao, P., Wang, Z. L., and Wang, E. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett., 82(26), 4806-4808(2003)
[6] Nazemnezhad, R. and Hosseini-Hashemi, S. Nonlinear free vibration analysis of Timoshenko nanobeams with surface energy. Meccanica, 50(4), 1027-1044(2015)
[7] Hosseini-Hashemi, S., Nazemnezhad, R., and Bedroud, M. Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Appl. Math. Model., 38(14), 3538-3553(2014)
[8] Hosseini-Hashemi, S., Nahas, I., Fakher, M., and Nazemnezhad, R. Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects. Smart. Mater. Struct., 23(3), 035012(2014)
[9] Hosseini-Hashemi, S., Nahas, I., Fakher, M., and Nazemnezhad, R. Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech., 225(6), 1555-1564(2014)
[10] Liu, C. and Rajapakse, R. Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol., 9(4), 422-431(2010)
[11] Gurtin, M. E. and Murdoch, A. I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. An., 57(4), 291-323(1975)
[12] Gurtin, M. E. and Murdoch, A. I. Surface stress in solids. Int. J. Solids. Struct., 14(6), 431-440(1978)
[13] Hosseini-Hashemi, S., Nazemnezhad, R., and Rokni, H. Nonlocal nonlinear free vibration of nanobeams with surface effects. Eur. J. Mech. A-Solids., 52, 44-53(2015)
[14] Ansari, R., Mohammadi, V., Shojaei, M. F, Gholami, R., and Sahmani, S. On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Compos. Part BEng, 60, 158-166(2014)
[15] Wang, G. F. and Feng, X. Q. Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D. Appl. Phys., 42(15), 155411(2009)
[16] Li, Y., Chen, C., Fang, B., Zhang, J., and Song, J. Postbuckling of piezoelectric nanobeams with surface effects. Int. J. Appl. Mech., 4(2), 1250018(2012)
[17] Guo, J. G. and Zhao, Y. P. The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology, 18(29), 295701(2007)
[18] Assadi, A. and Farshi, B. Size-dependent longitudinal and transverse wave propagation in embedded nanotubes with consideration of surface effects. Acta Mech., 222(1/2), 27-39(2011)
[19] Hosseini-Hashemi, S., Fakher, M., Nazemnezhad, R., and Haghighi, M. H. S. Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects. Compos. Part B-Eng., 61, 66-72(2014)
[20] Wang, K. and Wang, B. Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy. J. Vib. Control., 21(12), 2452-2464(2015)
[21] Hasheminejad, S. M., Gheshlaghi, B., Mirzaei, Y., and Abbasion, S. Free transverse vibrations of cracked nanobeams with surface effects. Thin. Solid. Films, 519(8), 2477-2482(2011)
[22] Wang, G. F. and Feng, X. Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett., 90(23), 231904(2007)
[23] Nazemnezhad, R., Salimi, M., Hashemi, S. H., and Sharabiani, P. A. An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects. Compos. Part B-Eng., 43, 2893-2897(2012)
[24] Fennimore, A., Yuzvinsky, T., Han, W. Q., Fuhrer, M., Cumings, J., and Zettl, A. Rotational actuators based on carbon nanotubes. nature, 424(6947), 408-410(2003)
[25] Witkamp, B., Poot, M., Pathangi, H., Hüttel, A., Van, D., and Zant, H. Self-detecting gatetunable nanotube paddle resonators. Appl. Phys. Lett., 93(11), 111909(2008)
[26] Meyer, J. C., Paillet, M., and Roth, S. Single-molecule torsional pendulum. Science, 309(5740), 1539-1541(2005)
[27] Dong, L., Nelson, B. J., Fukuda, T., and Arai, F. Towards nanotube linear servomotors. IEEE Trans. Autom. Sci. Eng, 3(3), 228-235(2006)
[28] Williams, P., Papadakis, S., Patel, A., Falvo, M., Washburn, S., and Superfine, R. Torsional response and stiffening of individual multiwalled carbon nanotubes. Phys. Rev. Lett., 89(25), 255502(2002)
[29] Gheshlaghi, B. and Hasheminejad, S. M. Size dependent torsional vibration of nanotubes. Physica E, 43(1), 45-48(2010)
[30] Murmu, T., Adhikari, S., and Wang, C. Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory. Physica E, 43(6), 1276-1280(2011)
[31] Lim, C. W., Li, C., and Yu, J. Free torsional vibration of nanotubes based on nonlocal stress theory. J. Sound. Vib., 331(12), 2798-2808(2012)
[32] Loya, J., Aranda-Ruiz, J., and Fernández-Sáez, J. Torsion of cracked nanorods using a nonlocal elasticity model. J. Phys. D Appl. Phys., 47(11), 115304(2014)
[33] Arda, M. and Aydogdu, M. Torsional statics and dynamics of nanotubes embedded in an elastic medium. Compos. Struct., 114, 80-91(2014)
[34] Rao, S. S. Vibration of Continuous Systems, John Wiley and Sons, Hoboken (2007)
[35] Freund, L. and Herrmann, G. Dynamic fracture of a beam or plate in plane bending. J. Appl. Mech., 43(1), 112-116(1976)
[36] Miller, R. E. and Shenoy, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11(3), 139-147(2000)
[37] Assadi, A. and Farshi, B. Vibration characteristics of circular nanoplates. J. Appl. Phys., 108(7), 074312(2010)
[38] Hosseini-Hashemi, S. and Nazemnezhad, R. An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B-Eng., 52, 199-206(2013)
[39] Gheshlaghi, B. and Hasheminejad, S. M. Surface effects on nonlinear free vibration of nanobeams. Compos. Part B-Eng., 42, 934-937(2011) |