[1] Hu, K. Q. and Chen, Z. T. An interface crack moving between magnetoelectroelastic and functionally graded elastic layers. Applied Mathematical Modelling, 38, 910-925(2014)
[2] Liu, H. T., Zhou, Z. G., and Wu, W. J. Dynamic stress intensity factors of two 3D rectangular cracks in a transversely isotropic elastic material under a time-harmonic elastic P-wave. Wave Motion, 51, 1309-1324(2014)
[3] Itou, S. Transient dynamic stress intensity factors around two rectangular cracks in a nonhomogeneous interfacial layer between two dissimilar elastic half-spaces under impact load. Acta Mechanica, 192(1), 89-110(2007)
[4] Zhou, Z. G., Liu, J. Y., and Wu, L. Z. Basic solutions of a 3D rectangular limited-permeable crack or two 3D rectangular limited-permeable cracks in piezoelectric materials. Meccanica, 47, 109-134(2012)
[5] Rekik, M., El-Borgi, S., and Ounaies, Z. An axisymmetric problem of an embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium. Applied Mathematical Modelling, 38, 1193-1210(2014)
[6] Liu, H. T. and Zhou, Z. G. Basic solution of a plane rectangular crack in a 3D infinite orthotropic elastic material. Mechanics Research Communications, 61, 7-18(2014)
[7] Liu, H. T., Zhou, Z. G., and Wu, L. Z. Basic solution of two 3D rectangular cracks in an orthotropic elastic media. ZAMM Journal of Applied Mathematics and Mechanics, 11, 1215-1229(2015)
[8] Monfared, M. M. and Ayatollahi, M. Dynamic stress intensity factors of multiple cracks in an orthotropic strip with FGM coating. Engineering Fracture Mechanics, 109, 45-57(2013)
[9] Shi, P. P., Sun, S., and Li, X. Arc-shaped interfacial crack in a non-homogeneous electro-elastic hollow cylinder with orthotropic dielectric layer. Meccanica, 48, 415-426(2013)
[10] Eringen, A. C. and Kim, B. S. Stress concentration at the tip of crack. Mechanics Research Communications, 1(4), 233-237(1974)
[11] Eringen, A. C. Non-local Polar Field Theory, Continuum Physics (ed. Eringen, A. C.), Vol. 4., Academic Press, New York, 205-267(1976)
[12] Eringen, A. C. Linear crack subject to anti-plane shear. Engineering Fracture Mechanics, 12(2), 211-219(1979)
[13] Zhou, Z. G. and Wang, B. Non-local theory solution of two collinear cracks in the functionally graded materials. International Journal of Solids and Structures, 43(5), 887-898(2006)
[14] Zhou, Z. G., Du, S. Y., and Wu, L. Z. Investigation of anti-plane shear behavior of a Griffith permeable crack in functionally graded piezoelectric materials by use of the non-local theory. Composite Structures, 78(4), 575-583(2007)
[15] Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, McGraw-Hill, New York, 828-930(1958)
[16] Yau, W. F. Axisymmetric slipless indentation of an infinite elastic cylinder. SIAM Journal on Applied Mathematics, 15(1), 219-227(1967)
[17] Liu, H. T., Zhou, Z. G., and Wu, L. Z. Non-local theory solution to a 3D rectangular crack in an infinite transversely isotropic elastic material. Meccanica, 50, 1103-1120(2015)
[18] Liu, H. T. and Zhou, Z. G. Non-local theory solution for a plane rectangular crack in a 3D infinite transversely isotropic elastic material under a time harmonic elastic P-wave. European Journal of Mechanic-A/Solids, 47, 327-340(2014)
[19] Liu, H. T., Zhou, Z. G., and Pan, S. D. Non-local theory solution for a 3D rectangular permeable crack in piezoelectric composite materials. Composite Structures, 119, 513-527(2015)
[20] Eringen, A. C. and Kim, B. S. Relation between non-local elasticity and lattice dynamics. Crystal Lattice Defects, 7, 51-57(1977)
[21] Nowinski, J. L. On non-local theory of wave propagation in elastic plates. Journal of Applied Physics, 51, 608-613(1984)
[22] Yang, F. Q. Fracture mechanics for a mode I crack in piezoelectric materials. International Journal of Solids and Structures, 38(21), 3813-3830(2001)
[23] Chen, W. Q., Lee, K. Y., and Ding, H. J. General solution for transversely isotropic magnetoelectro-thermo-elasticity and the potential theory method. International Journal of Engineering Science, 42(13/14), 1361-1379(2004)
[24] Ding, H. J., Chen, B., and Liang, J. General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures, 33(16), 2283-2296(1996)
[25] Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integral, Series and Products, Academic Press, New York, 1159-1161(1980)
[26] Erdelyi, A. Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York, 34-89(1954)
[27] Pan, E. and Heyliger, P. R. Free vibrations of simply supported and multilayered magneto-electroelastic plates. Journal of Sound and Vibration, 252(3), 429-442(2002)
[28] Eringen, A. C. Interaction of a dislocation with a crack. Journal of Applied Physics, 54(12), 6811-6817(1983)
[29] Liu, H. T., Zhou, Z. G., Wu, L. Z., and Wu, W. J. Non-local theory solution to a rectangular crack in a 3D infinite orthotropic elastic medium. International Journal of Solids and Structures, 58, 207-219(2015)
[30] Yang, Y. H. The non-local theory solution of orthotropic composite materials on the stress field near the crack tips. Journal of Solid Mechanics and Materials Engineering, 3(9), 1081-1089(2009) |