[1] Love, A. E. H. Mathematical Theory of Elasticity, Cambridge University Press, Cambridge (1920)
[2] Ewing, W. M., Jardetzky, W. S., and Press, F. Elastic Waves in Layered Media, McGraw-Hill, New York (1957)
[3] Biot, M. A. Mechanics of Incremental Deformations, John Wiley and Sons, New York (1965)
[4] Gubbins, D. Seismology and Plate Tectonics, Cambridge University Press, Cambridge (1990)
[5] Udias, A. Principles of Seismology, Cambridge University Press, Cambridge (1999)
[6] Moresi, L., Mühlhaus, H. B., and Dufour, F. Viscoelastic formulation for modelling of plate tectonics. Bifurcation and Localization in Soils and Rocks, Balkema, Rotterdam, 337-344(2001)
[7] Singh, A. K. and Lakshman, A. Effect of loosely bonded undulated boundary surfaces of doubly layered half-space on the propagation of torsional wave. Mechanics Research Communications, 73, 91-106(2016)
[8] Kakar, R., Kaur, K., and Gupta, K. C. Torsional vibrations in a non-homogeneous medium over a viscoelastic dissipative medium. International Journal of Pure and Applied Sciences and Technology, 14, 39-49(2013)
[9] Kumari, P. and Sharma, V. K. Propagation of torsional waves in a viscoelastic layer over an inhomogeneous half space. Acta Mechanica, 225, 1673-1684(2010)
[10] Dey, S., Gupta, A. K., and Gupta, S. Propagation of torsional surface waves in viscoelastic medium. International Journal for Numerical and Analytical Methods in Geomechanics, 20, 209-213(1996)
[11] Tanimoto, N. An analysis of combined longitudinal and torsional elastic-plastic-viscoplastic waves in a thin-walled tube. Journal of Solid Mechanics and Materials Engineering, 1, 1112-1127(2007)
[12] Kumari, P., Sharma, V. K., and Modi, C. Torsional wave in a viscoelastic layer over a viscoelastic substratum of Voigt types. Journal of Earthquake Engineering, 20, 1278-1294(2016)
[13] Kumari, P., Sharma, V. K., and Modi, C. Modeling of magnetoelastic shear waves due to point source in a viscoelastic crustal layer over an inhomogeneous viscoelastic half space. Waves in Random and Complex Media, 26, 101-120(2015)
[14] Sahu, S. A., Saroj, P. K., and Dewangan, N. SH-waves in viscoelastic heterogeneous layer over half-space with self-weight. Archive of Applied Mechanics, 84, 235-245(2014)
[15] Kumar, S., Pal, P. C., and Bose, S. Propagation of SH-type waves in inhomogeneous anisotropic layer overlying an anisotropic viscoelastic half-space. International Journal of Engineering, Science and Technology, 6, 24-30(2014)
[16] Chattopadhyay, A., Gupta, S., Kumari, P., and Sharma, V. K. Effect of point source and heterogeneity on the propagation of SH-waves in a viscoelastic layer over a viscoelastic half space. Acta Geophysica, 60, 119-139(2012)
[17] Romeo, M. Interfacial viscoelastic SH-wave. International Journal of Solids and Structures, 40, 2057-2068(2003)
[18] ?ervený, V. Reflection/transmission laws for slowness vectors in viscoelastic anisotropic media. Studia Geophysica et Geodaetica, 51, 391-410(2007)
[19] Manolis, G. D. and Shaw, R. P. Harmonic wave propagation through viscoelastic heterogeneous media exhibiting mild stochasticity I:fundamental solutions. Soil Dynamics and Earthquake Engineering, 15, 119-127(1996)
[20] Singh, A. K., Lakhsman, A., and Chattopadhyay, A. Effect of internal friction and the Lame ratio on stoneley wave propagation in viscoelastic media of order 1. International Journal of Geomechanics, 16, 04015090(2015)
[21] Weiskopf, W. H. Stresses in soils under a foundation. Journal of the Franklin Institute, 239, 445-465(1945)
[22] Chattaraj, R., Samal, S. K., and Debasis, S. On torsional surface wave in dry sandy crust laid over an inhomogeneous half space. Meccanica, 50, 1807-1816(2015)
[23] Vishwakarma, S. K. and Gupta, S. Existence of torsional surface waves in an Earth's crustal layer lying over a sandy mantle. Journal of Earth System Science, 122, 1411-1421(2013)
[24] Dey, S., Gupta, A. K., and Gupta, S. Effect of gravity and initial stress on torsional surface waves in dry sandy medium. Journal of Engineering Mechanics, 128, 1115-1118(2002)
[25] Kundu, S., Saha, A., Gupta, S., and Manna, S. Propagation of torsional wave in a nonhomogeneous crustal layer over a dry sandy mantle. Meccanica, 50, 3029-3040(2015)
[26] Pal, A. K., Kalyani, V. K., and Kar, B. K. Energy partitions at a solid-sandy bilateral interface due to an incident antiplane shear wave. Proceeding of Indian National Science Academy, 52, 1390-1397(1986)
[27] Tomar, S. K. and Kaur, J. SH-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half-space. Acta Mechanica, 190, 1-28(2007)
[28] Shekhar, S. and Parvez, I. A. Propagation of torsional surface waves in a double porous layer lying over a Gibson half space. Soil Dynamics and Earthquake Engineering, 80, 56-64(2016)
[29] Vishwakarma, S. K., Gupta, S., and Kundu, S. Torsional wave propagation in a substratum over a dry sandy Gibson half-space. International Journal of Geomechanics, 14, 06014002(2014)
[30] Bullen, K. E. The problem of the Earth's density variation. Bulletin of the Seismological Society of America, 30, 225-234(1940)
[31] Birch, F. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57, 227-288(1952)
[32] Dey, S., Gupta, A. K., and Gupta, S. Torsional surface waves in nonhomogeneous and anisotropic medium. The Journal of the Acoustical Society of America, 99, 2737-2741(1996)
[33] Gupta, S., Vishwakarma, S. K., Majhi, D. K., and Kundu, S. Influence of linearly varying density and rigidity on torsional surface waves in inhomogeneous crustal layer. Applied Mathematics and Mechanics (English Edition), 33, 1239-1252(2012) DOI 10.1007/s10483-012-1618-7
[34] Ke, L. L., Wang, Y. S., and Zhang, Z. M. Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties. Soil Dynamics and Earthquake Engineering, 26, 574-581(2006)
[35] Ke, L. L., Wang, Y. S., and Zhang, Z. M. Propagation of Love waves in an inhomogeneous fluid saturated porous layered half-space with properties varying exponentially. Journal of Engineering Mechanics, 131, 1322-1328(2005)
[36] Kakar, R. and Kakar, S. Love wave in a Voigt-type viscoelastic heterogeneous layer overlying heterogeneous viscoelastic half-space. International Journal of Geomechanics, 17, 06016009(2017)
[37] Abd-Alla, A. M., Mahmoud, S. R., Abo-Dahab, S. M., and Helmy, M. I. Influences of rotation, magnetic field, initial stress, and gravity on Rayleigh waves in a homogeneous orthotropic elastic half-space. Applied Mathematical Sciences, 4, 91-108(2010)
[38] Abd-Alla, A. M., Abo-Dahab, S. M., and Al-Thamali, T. A. Love waves in a non-homogeneous orthotropic magneto-elastic layer under initial stress overlying a semi-infinite medium. Journal of Computational and Theoretical Nanoscience, 10, 10-18(2013)
[39] Vishwakarma, S. K. and Xu, R. G-type dispersion equation under suppressed rigid boundary:analytic approach. Applied Mathematics and Mechanics (English Edition), 37, 501-512(2016) DOI 10.1007/s10483-016-2048-9 |