[1] Guo, Y. N., Li, C. J., Zhang, Y. H., and Ma, G. F. Spacecraft attitude maneuver using control moment gyroscope with gimbal angle constraints. Acta Aeronautica et Astronautica Sinica, 32(7), 1231-1239(2011)
[2] Hu, Q., Jia, Y. H., and Xu, S. J. Dynamics and vibration suppression of space structures with control moment gyroscopes. Acta Astronautica, 96(4), 232-245(2014)
[3] Cheng, G. D. Research on Attitude Maneuver Control of Agile Satellites Using Control Moment Gyroscope (in Chinese), M. Sc. dissertation, Harbin Institute of Technology, 60-88(2014)
[4] Wei, D. Z., Li, G., Fu, R., Wu, D. Y., and Zhang, J. Y. Design of SGCMG and long life rotor bearing system technology in Tiangong-1(in Chinese). Science in China (Series E:Technological Sciences), 44(3), 261-268(2014)
[5] Zhang, J. R. Steering laws analysis of SGCMGs based on singular value decomposition theory. Applied Mathematics and Mechanics (English Edition), 29(8), 1013-1021(2008) DOI 10.1007/s10483-008-0805-2
[6] Wie, B. Singularity analysis and visualization for single-gimbal control moment gyro systems. Journal of Guidance, Control, and Dynamics, 27(2), 271-282(2004)
[7] Zhang, J. W., Ma, K. M., and Meng, G. Z. Modeling of spacecraft attitude systems with single gimbal control moment gyros and controllability analysis (in Chinese). Systems Engineering and Electronics, 34(4), 761-766(2012)
[8] Ford, K. A. and Hall, C. D. Flexible spacecraft reorientations using gimbaled momentum wheels. Advances in the Astronautical Sciences, 97(3), 1895-1914(1998)
[9] Schaub, H., Vadali, S. R., and Junkins, J. L. Feedback control law for variable speed control moment gyros. Journal of the Astronautical Sciences, 46(3), 307-328(1998)
[10] Schaub, H. and Junkins, J. L. Singularity avoidance using null motion and variable-speed control moment gyros. Journal of Guidance, Control, and Dynamics, 23(1), 11-16(2000)
[11] Cui, P. L. and He, J. X. Steering law for two parallel variable-speed double-gimbal control moment gyros. Journal of Guidance, Control, and Dynamics, 37(1), 350-359(2013)
[12] Kanzawa, T., Haruki, M., and Yamanaka, K. Steering law of control moment gyroscopes for agile attitude maneuvers. Journal of Guidance, Control, and Dynamics, 39(4), 952-962(2016)
[13] Bhat, S. P. and Tiwari, P. K. Controllability of spacecraft attitude using control moment gyroscopes. IEEE Transactions on Automatic Control, 54(3), 585-590(2009)
[14] Zhang, J. W., Ma, K. M., Meng, G. Z., and Tian, S. Spacecraft maneuvers via singularityavoidance of control moment gyros based on dual-mode model predictive control. IEEE Transactions on Aerospace and Electronic Systems, 51(4), 2546-2559(2015)
[15] Gui, H. C., Jin, L., and Xu, S. J. Maneuver planning of a rigid spacecraft with two skew control moment gyros. Acta Astronautica, 104(1), 293-303(2014)
[16] Crouch, P. Spacecraft attitude control and stabilization:applications of geometric control theory to rigid body models. IEEE Transactions on Automatic Control, 29(4), 321-331(1984)
[17] Hu, B. and Ge, X. S. Nonlinear control of attitude stabilization of an underactuated spacecraft (in Chinese). Journal of Beijing Institute of Machinery, 24(1), 12-16(2009)
[18] Yang, H. and Wu, Z. Attitude controller design of underactuated spacecraft with two control moment gyroscopes (in Chinese). Proceedings of the 6th World Congress on Intelligent Control and Automation, IEEE, Dalian, 939-943(2006)
[19] Chen, L. Q. and Xue, Y. Theoretical Mechanics (in Chinese), 2nd ed., Tsinghua University Press, Beijing, 360-389(2014)
[20] Cui, W. Q. Research on Attitude Maneuver of Agile Satellites Using SGCMGs (in Chinese), M. Sc. dissertation, Harbin Institute of Technology, 60-89(2010)
[21] Di Gennaro, S. Passive attitude control of flexible spacecraft from quaternion measurements. Journal of Optimization Theory and Applications, 116(1), 41-60(2003)
[22] Wen, H., Chen, T., Jin, D. P., and Hu, H. Y. Passivity-based control with collision avoidance for a hub-beam spacecraft. Advances in Space Research, 59(1), 425-433(2017)
[23] Hu, Q. and Zhang, J. R. Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes. Journal of Aerospace Engineering, 29(1), 15-27(2015)
[24] Wen, H., Zhu, Z. H., Jin, D. P., and Hu, H. Y. Model predictive control with output feedback for a deorbiting electrodynamic tether system. Journal of Guidance, Control, and Dynamics, 39(10), 2455-2460(2016)
[25] Peng, H. J. and Jiang, X. Nonlinear receding horizon guidance for spacecraft formation reconfiguration on libration point orbits using a symplectic numerical method. ISA Transactions, 60, 38-52(2016)
[26] Li, M. W. and Peng, H. J. Solutions of nonlinear constrained optimal control problems using quasilinearization and variational pseudospectral methods. ISA Transactions, 62, 177-192(2016)
[27] Wen, H., Zhu, Z. H., Jin, D. P., and Hu, H. Y. Tension control of space tether via online quasilinearization iterations. Advances in Space Research, 57(3), 754-763(2016)
[28] Li, P., Zhu, Z. H., and Meguid, S. A. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters. Advances in Space Research, 58(1), 64-73(2016)
[29] Quirynen, R., Vukov, M., Zanon, M., and Diehl, M. Autogenerating microsecond solvers for nonlinear MPC:a tutorial using ACADO integrators. Optimal Control Applications and Methods, 36(5), 685-704(2015)
[30] Fan, G. W., Chang, L., Dai, L., Xu, K., and Yang, X. B. Nonlinear model predictive control of agile satellite attitude maneuver (in Chinese). Optics and Precision Engineering, 23(8), 2318-2327(2015) |