[1] RIZZETTA, D. P., VISBAL, M. R., and MORGAN, P. E. A high-order compact finite-difference scheme for large-eddy simulation of active flow control. Progress in Aerospace Sciences, 44, 397-426(2008) [2] JOHNSEN, E., LARSSON, J., BHAGATWALA, A. V., CABOT, W. H., and MOIN, P. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. Journal of Computational Physics, 229, 1213-1237(2010) [3] KAWAI, S., SHANKAR, S. K., and LELE, S. K. Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. Journal of Computational Physics, 229, 1739-1762(2010) [4] NAGARAJAN, S., LELE, S. K., and FERZIGER, J. H. A robust high-order compact method for large eddy simulation. Journal of Computational Physics, 191, 392-419(2003) [5] LAMBALLAIS, E., FORTUNÉ, V., and LAIZET, S. Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation. Journal of Computational Physics, 230, 3270-3275(2011) [6] COOK, A. W. and RILEY, J. J. Direct numerical simulation of a turbulent reactive plume on parallel computer. Journal of Computational Physics, 129, 263-283(1996) [7] SUN, Z. S., REN, Y. X., LARRICQ, C., ZHANG, S. Y., and YANG, Y. C. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. Journal of Computational Physics, 230, 4616-4635(2011) [8] GHOSAL, S. An analysis of numerical errors in large-eddy simulations of turbulence. Journal of Computational Physics, 125, 187-206(1996) [9] ROECK, W., DESMET, W., BAELMANS, M., and SAS, P. An overview of high-order finite difference schemes for computational aeroacoustics. Proceedings of the International Conference on Noise and Vibration Engineering, Katholieke Universiteit Leuven, 353-368(2004) [10] SESCU, A., HIXON, R., and AFJEH, A. A. Multidimensional optimization of finite difference schemes for computational aeroacoustics. Journal of Computational Physics, 227, 4563-4588(2008) [11] KIM, J. W. Optimised boundary compact finite difference schemes for computational aeroacoustics. Journal of Computational Physics, 225, 995-1019(2007) [12] TAOVE, A. and HAGNESS, S. C. Computational Electrodynamics:the Finite-Difference TimeDomain Method, Artech House, London (2005) [13] BRIO, M. and WU, C. C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 75, 400-422(1988) [14] CARPENTER, M. H., GOTTLIEB, D., and ABARBANEL, S. The stability of numerical boundary treatments for compact high-order finite-difference schemes. Journal of Computational Physics, 108, 272-295(1993) [15] DENG, X. G., JIANG, Y., MAO, M. L., LIU, H. Y., LI, S., and TU, G. H. A family of hybrid celledge and cell-node dissipative compact schemes satisfying geometric conservation law. Computers and Fluids, 116, 29-45(2015) [16] JIANG, Y., MAO, M. L., DENG, X. G., and LIU, H. Y. Large eddy simulation on curvilinear meshes using seventh-order dissipative compact scheme. Computers and Fluids, 104, 73-84(2014) [17] JIANG, Y., MAO, M. L., DENG, X. G., and LIU, H. Y. Numerical investigation on body-wake ow interaction over rod-airfoil configuration. Journal of Fluid Mechanics, 779, 1-35(2015) [18] GUSTAFSSON, B. The convergence rate for difference approximations to mixed initial boundary value problems. Mathematics of Computation, 29, 396-406(1975) [19] DENG, X. G., CHEN, Y. M., XU, D., and WANG, G. X. A novel boundary treatment method for global seventh-order dissipative compact finite-difference scheme. 23rd AIAA Computational Fluid Dynamics Conference, Denver, Colorado, AIAA 2017-4497(2017) [20] HAUPT, R. L. and HAUPT, S. E. Practical Genetic Algorithms, John Wiley and Sons, Hoboken (2004) [21] TURNER, J. M., HAERI, S., and KIM, J. W. Improving the boundary efficiency of a compact finite difference scheme through optimising its composite template. Computers and Fluids, 138, 9-25(2016) [22] BREHM, C. On consistent boundary closures for compact finite-difference weno schemes. Journal of Computational Physics, 334, 573-581(2017) [23] TREFETHEN, L. N. Spectra and pseudospectra. Springer Series in Computational Mathematics, 26, 217-249(1999) [24] TREFETHEN, L. N. Pseudospectra of matrices. Numerical Analysis, 91, 234-266(1991) [25] TREFETHEN, L. N., TREFETHEN, A. E., REDDY, S. C., and DRISCOLL, T. A. Hydrodynamic stability without eigenvalues. Science, 261, 578-584(1993) [26] ROE, P. L. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357-372(1981) [27] KATATE MASATSUKA. I Do Like CFD, Katate Masatsuka, California (2013) [28] GOTTLIEB, S. and SHU, C. W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67, 73-85(1998) |