[1] |
FANG, Z. W., ZHANG, Y. W., LI, X., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. Journal of Sound and Vibration, 391, 35-49(2017)
|
[2] |
ZOU, H., ZHANG, W., LI, W., WEI, K., HU, K., PENG, Z., and MENG, G. Magnetically coupled flextensional transducer for wideband vibration energy harvesting:design, modeling and experiments. Journal of Sound and Vibration, 416, 55-79(2018)
|
[3] |
PEREZ, M., BOISSEAU, S., GASNIER, P., WILLEMIN, J., GEISLER, M., and REBOUD, J. L. A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications. Smart Materials and Structures, 25(4), 045015(2016)
|
[4] |
ZHANG, X., PONDROM, P., SESSLER, G. M., and MA, X. Ferroelectret nanogenerator with large transverse piezoelectric activity. Nano Energy, 50, 52-61(2018)
|
[5] |
ANTON, S. R., FARINHOLT, K. M., and ERTURK, A. Piezoelectret foam-based vibration energy harvesting. Journal of Intelligent Material Systems and Structures, 25(14), 1681-1692(2014)
|
[6] |
LU, Z. Q., LI, K., DING, H., and CHEN, L. Q. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics (English Edition), 40(1), 167-180(2019) https://doi.org/10.1007/s10483-019-2408-9
|
[7] |
CAO, D. X., LEADENHAM, S., and ERTURK, A. Internal resonance for nonlinear vibration energy harvesting. European Physical Journal-Special Topics, 224(14-15), 2867-2880(2015)
|
[8] |
CAO, D. X., GUO, X. Y., and HU, W. H. A novel low-frequency broadband piezoelectric energy harvester combined with a negative stiffness vibration isolator. Journal of Intelligent Material Systems and Structures, 30(7), 1105-1114(2019)
|
[9] |
ZHANG, W., YAO, Z., and YAO, M. Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Science China-Technological Sciences, 52(3), 731-742(2009)
|
[10] |
ZHANG, W., WU, Q. L., and MA, W. S. Chaotic wave motions and chaotic dynamic responses of piezoelectric laminated composite rectangular thin plate under combined transverse and in-plane excitations. International Journal of Applied Mechanics, 10(10), 28(2018)
|
[11] |
ERTURK, A., HOFFMANN, J., and INMAN, D. J. A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94(25), 254102(2009)
|
[12] |
SUN, S. and CAO, S. Q. Analysis of chaos behaviors of a bistable piezoelectric cantilever power generation system by the second-order Melnikov function. Acta Mechanica Sinica, 33(1), 200-207(2017)
|
[13] |
LAN, C., QIN, W., and DENG, W. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam. Applied Physics Letters, 107(9), 093902(2015)
|
[14] |
ZHOU, S., CAO, J., INMAN, D. J., LIN, J., LIU, S., and WANG, Z. Broadband tristable energy harvester:modeling and experiment verification. Applied Energy, 133, 33-39(2014)
|
[15] |
ZHOU, S. and ZUO, L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271-284(2018)
|
[16] |
LAI, S. K., WANG, C., and ZHANG, L. H. A nonlinear multi-stable piezomagnetoelastic harvester array for low-intensity, low-frequency, and broadband vibrations. Mechanical Systems and Signal Processing, 122, 87-102(2019)
|
[17] |
YUAN, T. C., YANG, J., and CHEN, L. Q. Nonlinear dynamics of a circular piezoelectric plate for vibratory energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 59, 651-656(2018)
|
[18] |
ZHAO, L. C., ZOU, H. X., YAN, G., ZHANG, W. M., PENG, Z. K., and MENG, G. Arbitrarydirectional broadband vibration energy harvesting using magnetically coupled flextensional transducers. Smart Materials and Structures, 27(9), 095010(2018)
|
[19] |
LIU, D., XU, Y., and LI, J. L. Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos Solitons & Fractals, 104, 806-812(2017)
|
[20] |
LU, Z. Q., CHEN, L. Q., BRENNAN, M. J., YANG, T., DING, H., and LIU, Z. G. Stochastic resonance in a nonlinear mechanical vibration isolation system. Journal of Sound and Vibration, 370, 221-229(2016)
|
[21] |
LIU, D., XU, Y., and LI, J. Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energy harvester system with fractional-order physical properties. Journal of Sound and Vibration, 399, 182-196(2017)
|
[22] |
LU, Z. Q., DING, H., and CHEN, L. Q. Resonance response interaction without internal resonance in vibratory energy harvesting. Mechanical Systems and Signal Processing, 121, 767-776(2019)
|
[23] |
UMEDA, M., NAKAMURA, K., and UEHA, S. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 35(5B), 3267-3273(1996)
|
[24] |
HALIM, M. A., KIM, D. H., and PARK, J. Y. Low frequency vibration energy harvester using stopper-engaged dynamic magnifier for increased power and wide bandwidth. Journal of Electrical Engineering & Technology, 11(3), 707-714(2016)
|
[25] |
HALIM, M. A. and PARK, J. Y. Piezoceramic based wideband energy harvester using impactenhanced dynamic magnifier for low frequency vibration. Ceramics International, 41, S702-S707(2015)
|
[26] |
HALIM, M. A. and PARK, J. Y. Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sensors and Actuators A:Physical, 208, 56-65(2014)
|
[27] |
LIU, H., LEE, C., KOBAYASHI, T., TAY, C. J., and QUAN, C. Investigation of an MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 21(3), 035005(2012)
|
[28] |
LI, S., CROVETTO, A., PENG, Z., ZHANG, A., HANSEN, O., WANG, M., LI, X., and WANG, F. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency. Sensors and Actuators A:Physical, 247, 547-554(2016)
|
[29] |
YUAN, T. C., YANG, J., and CHEN, L. Q. A harmonic balance approach with alternating frequency/time domain progress for piezoelectric mechanical systems. Mechanical Systems and Signal Processing, 120, 274-289(2019)
|
[30] |
DECHANT, E., FEDULOV, F., CHASHIN, D. V., FETISOV, L. Y., FETISOV, Y. K., and SHAMONIN M. Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers. Smart Materials and Structures, 26(6), 065021(2017)
|
[31] |
LIU, S., CHENG, Q., ZHAO, D., and FENG, L. Theoretical modeling and analysis of two-degreeof-freedom piezoelectric energy harvester with stopper. Sensors and Actuators A:Physical, 245, 97-105(2016)
|
[32] |
ZHAO, D., LIU, S., XU, Q., SUN, W., WANG, T., and CHENG, Q. Theoretical modeling and analysis of a 2-degree-of-freedom hybrid piezoelectric-electromagnetic vibration energy harvester with a driven beam. Journal of Intelligent Material Systems and Structures, 29(11), 2465-2476(2018)
|