[1] TIKHONOV, A. N. On the solution of ill-posed problems and the method of regularization. Doklady Akademii Nauk SSSR, 151, 501-504(1963) [2] BENJAMIN, S. and THORSTEN, H. Higher order convergence rates for Bregman iterated variational regularization of inverse problems. Numerische Mathematik, 141, 215-252(2018) [3] ZHU, W., SHU, S., and CHENG, L. Z. An efficient proximity point algorithm for total-variationbased image restoration. Advances in Applied Mathematics and Mechanics, 6, 145-164(2014) [4] CLASON, C., KRUSE, F., and KUNISH, K. Total variation regularization of multi-material topology optimization. ESAIM:Mathematical Modelling and Numerical Analysis, 52, 275-303(2018) [5] ZHANG, H., CHENG, L. Z., and ZHU, W. Nuclear norm regularization with a low-rank constraint for matrix completion. Inverse Problems, 26, 115009(2010) [6] DONG, J., XUE, Z. C., GUAN, J., HAN, Z. F., and WANG, W. W. Low rank matrix completion using truncated nuclear norm and sparse regularizer. Signal Processing:Image Communication, 68, 76-87(2018) [7] USEVICH, K. and COMON, P. Hankel low-rank matrix completion:performance of the nuclear norm relaxation. IEEE Journal of Selected Topics in Signal Processing, 10, 637-646(2017) [8] ZHU, W., SHU, S., and CHENG, L. Z. First-order optimality condition of basis pursuit denoise problem. Applied Mathematics and Mechanics (English Edition), 35(10), 1345-1352(2014) https://doi.org/10.1007/s10483-014-1860-9 [9] ZHU, W., SHU, S., and CHENG, L. Z. Proximity point algorithm for low-rank matrix recovery from sparse noise corrupted data. Applied Mathematics and Mechanics (English Edition), 35(2), 259-268(2014) https://doi.org/10.1007/s10483-014-1788-6 [10] BREDIES, K. and LORENZ, D. A. Regularization with non-convex separable constraints. Inverse Problem, 25, 085011(2009) [11] GRASMAIR, M., HALTMEIER, M., and SCHERZER, O. Sparse regularization with lq penalty term. Inverse Problems, 24, 055020(2008) [12] ENGL, H. W. and RAMLAU, R. Regularization of inverse problems. Encyclopedia of Applied and Computational Mathematics, Springer, Heidelberg (2015) [13] ARJOUNE, Y., KAABOUCH, N., GHAZI, H. E., and TAMTAOUI, A. Compressive sensing:performance comparison of sparse recovery algorithms. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, Las Vegas (2017) [14] DAN, W. and ZHANG, Z. Generalized sparse recovery model and its neural dynamical optimization method for compressed sensing. Circuits Systems and Signal Processing, 36, 4326-4353(2017) [15] CHARTRAND, R. and STANEVA, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 24, 657-682(2008) [16] CHARTRAND, R. and YIN, W. T. Iteratively reweighted algorithms for compressive sensing. International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), 3869-3872(2008) [17] CHARTRAND, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14, 707-710(2007) [18] GE, D., JIANG, X., and YE, Y. A note on complexity of Lp minimization. Mathematics Programming, 129, 285-299(2011) [19] FOUCART, S. and LAI, M. J. Sparsest solutions of underdetermined linear systems via lqminimization for 0< q ≤ 1. Applied and Computational Harmonic Analysis, 26, 395-407(2009) [20] FOUCART, S. A note on guaranteed sparse recovery via l1-minimization. Applied and Computational Harmonic Analysis, 29, 97-103(2010) [21] CANDÈS, E. J. and PLAN, Y. A probabilistic and RIPless theory of compressed sensing. IEEE Transactions on Information Theory, 57, 7235-7254(2010) [22] SUN, Q. Y. Sparse approximation property and stable recovery of sparse signals from noisy measurements. IEEE Transactions on Signal Processing, 59, 5086-5090(2011) [23] FAZEL, M. Matrix Rank Minimization with Applications, Ph. D. dissertation, Stanford University, California (2002) [24] CANDÈS, E. J., WAKIN, M. B., and BOYD, S. P. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14, 877-905(2008) [25] DAUCHEBIES, I., DEVORE, R., FORNASIER, M., and GUNTURK, C. S. Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 63, 1-38(2010) [26] MOURAD, N. and REILLY, J. F. Minimizaing nonconvex functions for sparse vector reconstruction. IEEE Transactions on Signal Processing, 58, 3485-3496(2010) [27] NEEDELL, D. Noisy signal recovery via iterative reweighted L1-minimization. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, IEEE, Pacific Grove (2009) [28] XU, W. Y., KHAJEHNEJAD, M. A., AVESTIMEHR, S., and HASSIBI, B. Breaking through the thresholds:an analysis for iterative reweighted l1 minimization via the Grassmann angle framework. ICASSP 2010:IEEE International Conference on Acoustics, Speech and Signal, IEEE, Texas (2009) [29] CHEN, X. J., XU, F., and YE, Y. Lower bound theory of nonzero entries in solutions of l2-lp minimization. SIAM Journal on Scientific Computing, 32, 2832-2852(2010) [30] LAI, M. J. and WANG, J. An unconstrained lq minimization with 0 < q ≤ 1 for sparse solution of underdetermined linear systems. SIAM Journal on Optimization, 21, 82-101(2011) [31] MOL, C. D., VITO, E. D., and ROSASCO, L. Elastic-net regularization in learning theory. Journal of Complexity, 25, 201-230(2009) [32] JIN, B. T., LORENZ, D. A., and SCHIFFLER, S. Elastic-net regularization:error estimates and active set methods. Inverse Problems, 25, 115022(2009) [33] ZOU, H. and HASTIE, T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society:Series B, 67, 301-320(2005) [34] CAI, J. F., OSHER, S., and SHEN, Z. W. Linearized Bregman iterations for compressed sensing. Mathematics of Computation, 78, 1515-1536(2009) [35] YIN, W. Analysis and generalizations of the linearized Bregman method. SIAM Journal on Imaging Sciences, 3, 856-877(2010) [36] ZHANG, H., CHENG, L. Z., and ZHU, W. A lower bound guaranteeing exact matrix completion via singular value thresholding algorithm. Applied and Computational Harmonic Analysis, 31, 454-459(2011) [37] BERTSEKAS, D. P., NEDIĆ, A., and OZDAGLAR, A. E. Convex Analysis and Optimization, Athena Scietific and Tsinghua University Press, Beijing (2006) [38] YUAN, Z. Y. and WANG, H. X. Phase retrieval via reweighted wirtinger flow method. Applied Optics, 56, 2418-2427(2017) [39] HARDY, G. H., LITTLEWOOD, J. E., and PÓLYA, G. Inequalities, Posts and Telecom Press, Beijing (2010) [40] FORNASIER, M. Theoretical Foundations and Numerical Methods for Sparse Recovery, De Gruyter, Berlin (2010) |