[1] AGHAKHANI, Y., BAGSHAW, A. P., BENAR, C. G., HAWCO, C., ANDERMANN, F., DUBEAU, F., and GOTMAN, J. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain, 127(5), 1127-1144(2004) [2] PINAULT, D. and O'BRIEN, T. J. Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Related Systems, 3(3), 181-203(2005) [3] TENNEY, J. R., DUONG, T. Q., KING, J. A., LUDWIG, R., and FERRIS, C. F. Corticothalamic modulation during absence seizures in rats:a functional MRI assessment. Epilepsia, 44(9), 1133-1140(2003) [4] MIAO, A., WANG, Y., XIANG, J., LIU, Q., CHEN, Q., QIU, W., LIU, H., TANG, L., GAO, Y., WU, C., YU, Y., SUN, J., JIANG, W., SHI, Q., ZHANG, T., HU, Z., and WANG, X. Ictal source locations and cortico-thalamic connectivity in childhood absence epilepsy:associations with treatment response. Brain Topography, 32(1), 178-191(2019) [5] YANG, D. P. and ROBINSON, P. A. Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Physical Review E, 100(3), 032405(2019) [6] WANG, R. B., ZHANG, Z. K., and CHI, K. T. Neurodynamics analysis of brain information transmission. Applied Mathematics and Mechanics (English Edition), 30(11), 1415-1428(2009) https://doi.org/10.1007/s10483-009-1107-y [7] KOLASSA, I. T., WIENBRUCH, C., NEUNER, F., SCHAUER, M., RUF, M., ODENWALD, M., and ELBERT, T. Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry, 7(1), 56(2007) [8] GUO, J., BISWAL, B. B., HAN, S., LI, J., YANG, S., YANG, M., and CHEN, H. Altered dynamics of brain segregation and integration in poststroke aphasia. Human Brain Mapping, 40(11), 3398-3409(2019) [9] GRANNAN, E. R., KLEINFELD, D., and SOMPOLINSKY, H. Stimulus-dependent synchronization of neuronal assemblies. Neural Computation, 5(4), 550-569(1993) [10] LEWIS, C. M., BOSMAN, C. A., WOMELSDORF, T., and FRIES, P. Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization. Proceedings of the National Academy of Sciences, 113(5), E606-E615(2016) [11] LIANG, S. and WANG, Z. Controlling a neuron by stimulating a coupled neuron. Applied Mathematics and Mechanics (English Edition), 40(1), 13-24(2019) https://doi.org/10.1007/s10483-019-2407-8 [12] SALANOVA, V. Deep brain stimulation for epilepsy. Epilepsy and Behavior, 88, 21-24(2018) [13] LODDENKEMPER, T., PAN, A., NEME, S., BAKER, K. B., REZAI, A. R., DINNER, D. S., MONTGOMERY, E., JR, and LÜDERS, H. O. Deep brain stimulation in epilepsy. Journal of Clinical Neurophysiology, 18(6), 514-532(2001) [14] OSORIO, I., OVERMAN, J., GIFTAKIS, J., and WILKINSON, S. B. High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia, 48(8), 1561-1571(2007) [15] WANG, Z. and WANG, Q. Eliminating absence seizures through the deep brain stimulation to thalamus reticular nucleus. Frontiers in Computational Neuroscience, 11, 22(2017) [16] YAMAMOTO, J., IKEDA, A., SATOW, T., TAKESHITA, K., TAKAYAMA, M., MATSUHASHI, M., MATSUMOTO, R., OHARA, S., MIKUNI, N., TAKAHASHI, T., MIYAMOTO, S., TAKI, W., HASHIMOTO, N., ROTHWELL, J. C., and SHIBASAKI, H. Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. Epilepsia, 43(5), 491-495(2002) [17] CHEN, M., GUO, D., WANG, T., JING, W., XIA, Y., XU, P., LUO, C., VALDES-SOSA, P. A., and YAO, D. Z. Bidirectional control of absence seizures by the basal ganglia:a computational evidence. PLoS Computational Biology, 10(3), e1003495(2014) [18] CHEN, M., GUO, D., LI, M., MA, T., WU, S., MA, J., CUI, Y., XIA, Y., XU, P., and YAO, D. Z. Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Computational Biology, 11(10), e1004539(2015) [19] HOLMES, M. D., BROWN, M., and TUCKER, D. M. Are generalized seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia, 45(12), 1568-1579(2004) [20] ROBINSON, P. A., RENNIE, C. J., WRIGHT, J. J., and BOURKE, P. D. Steady states and global dynamics of electrical activity in the cerebral cortex. Physical Review E, 58(3), 3557-3571(1998) [21] WRIGHT, J. J. and LILEY, D. T. J. Dynamics of the brain at global and microscopic scales:neural networks and the EEG. Behavioral and Brain Sciences, 19(2), 285-295(1996) [22] ROBINSON, P. A., RENNIE, C. J., and ROWE, D. L. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65(4), 041924(2002) [23] RUBIN, J. E. and TERMAN, D. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211-235(2004) [24] GUO, Y., RUBIN, J. E., MCINTYRE, C. C., VITEK, J. L., and TERMAN, D. Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. Journal of Neurophysiology, 99(3), 1477-1492(2008) [25] FAN, D. and WANG, Q. Closed-loop control of absence seizures inspired by feedback modulation of basal ganglia to the corticothalamic circuit. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(3), 581-590(2020) [26] FAN, D. and WANG, Q. Improved control effect of absence seizures by autaptic connections to the subthalamic nucleus. Physical Review E, 98(5), 052414(2018) [27] ERMENTROUT, B. Simulating, analyzing, and animating dynamical systems:a guide to XPPAUT for researchers and students. Applied Mechanics Reviews, 56(4), B53(2003) [28] FAN, D., WANG, Q., SU, J., and XI, H. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. Journal of Computational Neuroscience, 43(3), 203-225(2017) [29] GE, Y., CAO, Y., YI, G., HAN, C., QIN, Y., WANG, J., and CHE, Y. Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy. Scientific Reports, 9(1), 1-16(2019) [30] YIN, L., ZHENG, R., KE, W., HE, Q., ZHANG, Y., LI, J., WANG, B., MI, Z., LONG, Y. S., and RASCH, M. J. Autapses enhance bursting and coincidence detection in neocortical pyramidal cells. Nature Communications, 9(1), 1-12(2018) [31] KE, W., HE, Q., and SHU, Y. Functional self-excitatory autapses (auto-synapses) on neocortical pyramidal cells. Neuroscience Bulletin, 35(6), 1106-1109(2019) [32] CONTARINO, M. F., BOUR, L. J., VERHAGEN, R., LOURENS, M. A., DE BIE, R. M., VAN DEN MUNCKHOF, P., and SCHUURMAN, P. R. Directional steering:a novel approach to deep brain stimulation. Neurology, 83(13), 1163-1169(2014) [33] MARTENS, H. C. F., TOADER, E., DECRE, M. M. J., ANDERSON, D. J., VETTER, R., KIPKE, D. R., BAKER, K. B., JOHNSON, M. D., and VITEK, J. L. Spatial steering of deep brain stimulation volumes using a novel lead design. Clinical Neurophysiology, 122(3), 558-566(2011) [34] KILE, K. B., TIAN, N., and DURAND, D. M. Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia, 51(9), 1745-1753(2010) [35] YAMAMOTO, J., IKEDA, A., KINOSHITA, M., MATSUMOTO, R., SATOW, T., TAKESHITA, K., MATSUHASHI, M., MIKUNI, N., MIYAMOTO, S., HASHIMOTO, N., and SHIBASAKI, H. Low-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsy. Seizure, 15(7), 520-527(2006) [36] NELSON, T. S., SUHR, C. L., FREESTONE, D. R., LAI, A., HALLIDAY, A. J., MCLEAN, K. J., BURKITT, A. N., and COOK, M. J. Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the gaers model of absence epilepsy. International Journal of Neural Systems, 21(2), 163-173(2011) [37] TASS, P. A., SILCHENKO, A. N., HAUPTMANN, C., BARNIKOL, U. B., and SPECKMANN, E. J. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Physical Review E, 80(1), 011902(2009) [38] LYSYANSKY, B., POPOVYCH, O. V., and TASS, P. A. Desynchronizing anti-resonance effect of m:n on-off coordinated reset stimulation. Journal of Neural Engineering, 8(3), 036019(2011) [39] KUBOTA, S. and RUBIN, J. E. Numerical optimization of coordinated reset stimulation for desynchronizing neuronal network dynamics. Journal of Computational Neuroscience, 45(1), 45-58(2018) [40] ADAMCHIC, I., TOTH, T., HAUPTMANN, C., WALGER, M., LANGGUTH, B., KLINGMANN, I., and TASS, P. A. Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus. NeuroImage:Clinical, 15, 541-558(2017) [41] GUO, Y. and RUBIN, J. E. Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Neural Networks, 24(6), 602-616(2011) [42] TASS, P. A. and HAUPTMANN, C. Anti-kindling achieved by stimulation targeting slow synaptic dynamics. Restorative Neurology and Neuroscience, 27(6), 591-611(2009) [43] TASS, P. A., QIN, L., HAUPTMANN, C., DOVERO, S., BEZARD, E., BORAUD, T., and MEISSNER, W. G. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Annals of Neurology, 72(5), 816-820(2012) [44] TASS, P. A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Oybernetics, 89(2), 81-88(2003) [45] LILLY, J. C., HUGHES, J. R., ALVORD, E. C., JR, and GALKIN, T. W. Brief, noninjurious electric waveform for stimulation of the brain. Science, 121, 468-469(1955) [46] MORTIMER, J. T., SHEALY, C. N., and WHEELER, C. Experimental nondestructive electrical stimulation of the brain and spinal cord. Journal of Neurosurgery, 32(5), 553-559(1970) [47] HARNACK, D., WINTER, C., MEISSNER, W., REUM, T., KUPSCH, A., and MORGENSTERN, R. The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats. Journal of Neuroscience Methods, 138, 207-216(2004) [48] GRILL, W. M. Model-based analysis and design of waveforms for efficient neural stimulation. Progress in Brain Research, 222, 147-162(2015) |