[1] HOLLISTER, S. J. Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524(2005) [2] IMBALZANO, G., LINFORTH, S., NGO, T. D., LEE, P. V. S., and TRAN, P. Blast resistance of auxetic and honeycomb sandwich panels:comparisons and parametric designs. Composite Structures, 183, 242-261(2018) [3] YANG, X. F., YANG, J. L., ZHANG, Z. Q., MA, J. X., SUN, Y. X., and LIU, H. A review of civil aircraft arresting system for runway overruns. Progress in Aerospace Sciences, 102, 99-121(2018) [4] GALEHDARI, S. A. and KHODARAHMI, H. Design and analysis of a graded honeycomb shock absorber for a helicopter seat during a crash condition. International Journal of Crashworthiness, 21(3), 231-241(2016) [5] KIM, M., CHOE, J., and LEE, D. G. Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb. Composite Structures, 158, 227-234(2016) [6] THOMAS, T. and TIWARI, G. Crushing behavior of honeycomb structure:a review. International Journal of Crashworthiness, 24(5), 555-579(2019) [7] GIBSON, L. J. and ASHBY, M. F. Cellular Solids:Structure and Properties, Cambridge University Press, Cambrigde, 98-148(1999) [8] CHUNG, J. and WAAS, A. M. The inplane elastic properties of circular cell and elliptical cell honeycombs. Acta Mechanica, 144(1), 29-42(2000) [9] RUAN, D., LU, G., WANG, B., and YU, T. X. In-plane dynamic crushing of honeycombs-a finite element study. International Journal of Impact Engineering, 28(2), 161-182(2003) [10] WANG, A. J. and MCDOWELL, D. L. In-plane stiffness and yield strength of periodic metal honeycombs. Journal of Engineering Materials and Technology, 126(2), 137-156(2004) [11] YANG, M. J. and QIAO, P. Z. Quasi-static crushing behavior of aluminum honeycomb materials. Journal of Sandwich Structures and Materials, 10(2), 133-160(2008) [12] SUN, D. Q. and ZHANG, W. H. Mean in-plane plateau stresses of hexagonal honeycomb cores under impact loadings. Composite Structures, 91, 168-185(2009) [13] LIU, Y. and ZHANG, X. C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. International Journal of Impact Engineering, 36(1), 98-109(2009) [14] QIU, X. M., ZHANG, J., and YU, T. X. Collapse of periodic planar lattices under uniaxial compression, part II:dynamic crushing based on finite element simulation. International Journal of Impact Engineering, 36(10/11), 1231-1241(2009) [15] QIU, X. M., ZHANG, J., and YU, T. X. Collapse of periodic planar lattices under uniaxial compression, part I:quasi-static strength predicted by limit analysis. International Journal of Impact Engineering, 36(10/11), 1223-1230(2009) [16] AJDARI, A., NAYEB-HASHEMI, H., and VAZIRI, A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. International Journal of Solids and Structures, 48(3/4), 506-516(2011) [17] HU, L. L., YOU, F. F., and YU, T. X. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Materials and Design, 46, 511-523(2013) [18] ZHANG, X. C., AN, L. Q., and DING, H. M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient. Journal of Sandwich Structures and Materials, 16(2), 125-147(2013) [19] AN, L. Q., ZHANG, X. C., WU, H. X., and JIANG, W. Q. In-plane dynamic crushing and energy absorption capacity of self-similar hierarchical honeycombs. Advances in Mechanical Engineering, 9(6), 1-15(2017) [20] MA, F. W., ZHAO, Y., YANG, L. F., and LIANG, H. Y. Theoretical study and simulation analysis on re-entrant square cellular material's mechanical properties. Advances in Mechanical Engineering, 10(4), 1-19(2018) [21] WANG, H., LU, Z. X., YANG, Z. Y., and LI, X. In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions. International Journal of Mechanical Sciences, 151, 746-759(2019) [22] WANG, Z. G. Recent advances in novel metallic honeycomb structure. Composites Part B:Engineering, 166, 731-741(2019) [23] ZHANG, S. and XU, F. X. A two-stage hybrid optimization for honeycomb-type cellular structures under out-of-plane dynamic impact. Applied Mathematical Modelling, 80, 755-770(2020) [24] CALLADINE, C. R. and ENGLISH, R. W. Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. International Journal of Mechanical Sciences, 26(11/12), 689-701(1984) [25] HABIB, F. N., IOVENITTI, P., MASOOD, S. H., and NIKZAD, M. Cell geometry effect on in-plane energy absorption of periodic honeycomb structures. International Journal of Advanced Manufacturing Technology, 94(5), 2369-2380(2017) [26] WU, H. X., LIU, Y., and ZHANG, X. C. In-plane crushing behavior and energy absorption design of composite honeycombs. Acta Mechanica Sinica, 34(6), 1108-1123(2018) [27] YANG, X. F., XI, X. L., PAN, Q. F., and LIU, H. In-plane dynamic crushing of a novel circularcelled honeycomb nested with petal-shaped mesostructure. Composite Structures, 226, 111219(2019) [28] ZHANG, T. G. and YU, T. X. A note on a ‘velocity sensitive’ energy-absorbing structure. International Journal of Impact Engineering, 8(1), 43-51(1989) [29] SU, X. Y., YU, T. X., and REID, S. R. Inertia-sensitive impact energy-absorbing structures part I:effects of inertia and elasticity. International Journal of Impact Engineering, 16(4), 651-672(1995) [30] SU, X. Y., YU, T. X., and REID, S. R. Inertia-sensitive impact energy-absorbing structures part II:effect of strain rate. International Journal of Impact Engineering, 16(4), 673-689(1995) [31] WEBB, D. C., KORMI, K., and AL-HASSANI, S. T. S. The influence of inertia and strain-rate on large deformation of plate-structures under impact loading. Computers and Structures, 79(19), 1781-1797(2001) [32] GAO, Z. Y., YU, T. X., and LU, G. A study on type II structures, part II:dynamic behavior of a chain of pre-bent plates. International Journal of Impact Engineering, 31(7), 911-926(2005) [33] PHAM, M. S., LIU, C., TODD, I., and LERTTHANASARN, J. J. N. Damage-tolerant architected materials inspired by crystal microstructure. nature, 565(7739), 305-311(2019) [34] SUN, D. Q., CAO, W. T., and CAI, M. In-plane crushing of square honeycomb cores, part I:mechanical behaviors. Applied Mechanics and Materials, 170-173, 3220-3223(2012) [35] SUN, D. Q., JIANG, Z. Y., and WEI, Y. B. In-plane crushing of square honeycomb cores, part II:energy absorption and cushioning optimization. Applied Mechanics and Materials, 170-173, 3237-3240(2012) [36] LU, G. and YU, T. X. Energy Absorption of Structures and Naterials, Woodhead Publishing, Cambrigde, 269-286(2003) [37] YU, T. X. and ZHANG, L. C. Plastic Bending:Theory and Applications, World Scientific, River Edge, 477-487(1996) |