[1] BIOT, M. A. The theory of elasticity and consolidation for a porous anisothropic solid. Journal of Applied Physics, 26(2), 182-185(1955) [2] BIOT, M. A. General solutions of equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 23, 91-96(1956) [3] CLEARY, M. P. Fundamental solutions for a fluid-saturated porous solid. International Journal of Solids and Structures, 13(9), 785-806(1977) [4] RUDNICKI, J. W. Fluid mass sources and point forces in linear elastic diffusive solids. Mechanics of Materials, 5(4), 383-393(1986) [5] PAN, E. Dislocation in an infinite poroelastic medium. Acta Mechanica, 87(1/2), 105-115(1991) [6] TAGUCHI, I. and KURASHIGE, M. Fundamental solutions for a fluid-saturated, transversely isotropic, poroelastic solid. International Journal for Numerical and Analytical Methods in Geomechanics, 26(3), 299-321(2002) [7] LI, X. Y., CHEN, W. Q., and WANG, H. Y. General steady-state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. European Journal of Mechanics A/Solids, 29(3), 317-326(2010) [8] ZHANG, Y. K. and HUANG, Y. The non-axisymmetrical dynamic response of transversely isotropic saturated poroelastic media. Applied Mathematics and Mechanics (English Edition), 22(1), 63-78(2001) https://doi.org/10.1007/BF02437945 [9] WANG, X. G. and HUANG, Y. 3-D dynamic response of transversely isotropic saturated soils. Applied Mathematics and Mechanics (English Edition), 26(11), 1409-1419(2005) https://doi.org/10.1007/BF03246246 [10] ZHENG, P., ZHAO, S. X., and DING, D. Dynamic Green's functions for a poroelastic half-space. Acta Mechanica, 224(1), 17-39(2013) [11] AI, Z. Y. and WU, C. Plane strain consolidation of soil layer with anisotropic permeability. Applied Mathematics and Mechanics (English Edition), 30(11), 1437-1444(2009) https://doi.org/10.1007/s10483-009-1109-7 [12] SHAN, Z. D., LING, D. S., and DING, H. J. Exact solutions to one-dimensional transient response of incompressible fluid-saturated single-layer porous media. Applied Mathematics and Mechanics (English Edition), 34(1), 75-84(2013) https://doi.org/10.1007/s10483-013-1654-7 [13] AI, Z. Y. and WANG, L. H. Layer-element analysis of multilayered saturated soils subject to axisymmetric vertical time-harmonic excitation. Applied Mathematics and Mechanics (English Edition), 38(9), 1295-1312(2017) https://doi.org/10.1007/s10483-017-2241-8 [14] KHOJASTEH, A., RAHIMIAN, M., and PAK, R. Y. S. Three-dimensional dynamic Green's functions in transversely isotropic bi-materials. International Journal of Solids and Structures, 45(18/19), 4952-4972(2008) [15] KHOJASTEH, A., RAHIMIAN, M., and ESKANDARI, M. Three-dimensional dynamic Green's functions in transversely isotropic tri-materials. Applied Mathematical Modelling, 37(5), 3164-3180(2013) [16] ZAFARI, Y., SHAHMOHAMADI, M., KHOJASTEH, A., and RAHIMIAN, M. Three-dimensional axisymmetric responses of exponentially graded transversely isotropic tri-materials under interfacial loading. Scientia Iranica, 24(3), 966-978(2017) [17] HOU, P. F., ZHAO, M., TONG, J., and FU, B. Three-dimensional steady-state Green's functions for fluid-saturated, transversely isotropic, poroelastic bimaterials. Journal of Hydrology, 496, 217-224(2013) [18] ZHENG, P., DING, B., ZHAO, S. X., and DING, D. 3D dynamic Green's functions in a multilayered poroelastic half-space. Applied Mathematical Modelling, 37(24), 10203-10219(2013) [19] CHEN, L. Three-dimensional Green's function for an anisotropic multi-layered half-space. Computational Mechanics, 56(5), 795-814(2015) [20] BA, Z. and LIANG, J. Fundamental solutions of a multi-layered transversely isotropic saturated half-space subjected to moving point forces and pore pressure. Engineering Analysis with Boundary Elements, 76, 40-58(2017) [21] LIANG, J., WU, M., and BA, Z. Three-dimensional dynamic Green's functions for transversely isotropic saturated half-space subjected to buried loads. Engineering Analysis with Boundary Elements, 108, 301-320(2019) [22] LI, P., WANG, K., FANG, G., and LU, D. Steady-state analytical solutions of flow and deformation coupling due to a point sink within a finite fluid-saturated poroelastic layer. International Journal for Numerical and Analytical Methods in Geomechanics, 41(8), 1093-1107(2017) [23] LI, P., WANG, K., and LU, D. Analytical solution of plane-strain poroelasticity due to surface loading within a finite rectangular domain. International Journal of Geomechanics, 17(4), 04016089(2016) [24] LI, P. and LU, D. An analytical solution of two-dimensional flow and deformation coupling due to a point source within a finite poroelastic media. Journal of Applied Mechanics-Transactions of the ASME, 78(6), 1-6(2011) [25] TABER, L. A. A theory for transverse deflection of poroelastic plates. Journal of Applied Mechanics-Transactions of the ASME, 59(3), 628-634(1992) [26] BIOT, M. A. Theory of buckling of a porous slab and its thermoelastic analogy. Journal of Applied Mechanics, 31(2), 194-198(1964) [27] LI, L. P., CEDERBAUM, G., and SCHULGASSER, K. Theory of poroelastic plates with in-plane diffusion. International Journal of Solids and Structures, 34(35/36), 4515-4530(1997) [28] WEN, P. H. and LIU, Y. W. The fundamental solution of poroelastic plate saturated by fluid and its applications. International Journal for Numerical and Analytical Methods in Geomechanics, 34(7), 689-709(2010) [29] REZAEI, A. S. and SAIDI, A. R. Buckling response of moderately thick fluid-infiltrated porous annular sector plates. Acta Mechanica, 228(11), 3929-3945(2017) [30] REZAEI, A. S. and SAIDI, A. R. Exact solution for free vibration of thick rectangular plates made of porous materials. Composite Structures, 134, 1051-1060(2015) [31] KHORSHIDVAND, A. R., JOUBANEH, E. F., JABBARI, M., and ESLAMI, M. R. Buckling analysis of a porous circular plate with piezoelectric sensor-actuator layers under uniform radial compression. Acta Mechanica, 225(1), 179-193(2014) [32] SINGH, S. J. and HARSHA, S. P. Analysis of porosity effect on free vibration and buckling responses for sandwich sigmoid function based functionally graded material plate resting on Pasternak foundation using Galerkin Vlasov's method. Journal of Sandwich Structures and Materials (2020) http://doi.org/10.1177/1099636220904340 [33] PAN, E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics-Transactions of the ASME, 68(4), 608-618(2001) [34] PAN, E. Static Green's functions in multilayered half spaces. Applied Mathematical Modelling, 21(8), 509-521(1997) [35] YANG, L., LI, Y., GAO, Y., and PAN, E. Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates. Applied Mathematical Modelling, 63, 203-218(2018) [36] ZHONG, Z. and SHANG, E. T. Exact analysis of simply supported functionally graded piezothermoelectric plates. Journal of Intelligent Material Systems and Structures, 16(7/8), 643-651(2005) [37] WANG, X. and PAN, E. Exact solution for simply supported and multilayered piezothermoelastic plates with imperfect interfaces. The Open Mechanics Journal, 1, 1-10(2007) [38] BOOKER, J. R. and CARTER, J. P. Analysis of a point sink embedded in a porous elastic half space. International Journal for Numerical and Analytical Methods in Geomechanics, 10(2), 137-150(1986) [39] CAKAJ, S. Modeling, Simulation and Optimization Tolerance and Optimal Control, InTech, Vukovar, 25-40(2010) [40] SCHMITT, D. P. Acoustic multipole logging in transversely isotropic poroelastic formations. The Journal of the Acoustical Society of America, 86(6), 2397-2421(1989) |