[1] DADA, L., LEHTIPALO, K., KONTKANEN, J., NIEMINEN, T., BAALBAKI, R., AHONEN, L., DUPLISSY, J., YAN, C., CHU, B. W., PETAJA, T., LEHTINEN, K., KERMINEN, V. M., KULMALA, M., and KANGASLUOMA, J. Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nature Protocols, 15(3), 1013-1040(2020) [2] ZHU, J., WANG, S. N., ZHENG, L. C., and ZHANG, X. X. Heat transfer of nanofluids considering nano-particl migration and second-order slip velocity. Applied Mathematics and Mechanics (English Edition), 38(1), 125-136(2017) https://doi.org/10.1007/s10483-017-2155-6 [3] SHEHZAD, S. A., MUSHTAQ, T., ABBAS, Z., RAUF, A., KHAN, S. U., and TLILI, I. Dynamics of bioconvection flow of micropolar nanoparticles with Cattaneo-Christov expressions. Applied Mathematics and Mechanics (English Edition), 41(9), 1333-1344(2020) https://doi.org/10.1007/s10483-020-2645-9 [4] SAFFARIPOUR, M., THOMSON, K. A., SMALLWOOD, G. J., and LOBO, P. A review on the morphological properties of non-volatile particulate matter emissions from aircraft turbine engines. Journal of Aerosol Science, 139, 105467(2020) [5] LIN, J. Z., PAN, X. J., YIN, Z. Q., and KU, X. K. Solution of general dynamic equation for nanoparticles in turbulent flow considering fluctuating coagulation. Applied Mathematics and Mechanics (English Edition), 37(10), 1275-1288(2016) https://doi.org/10.1007/s10483-016-2131-9 [6] DONALDSON, K., TRAN, L., JIMENEZ, L. A., DUFFIN, R., NEWBY, D. E., MILLS, N., MACNEE, W., and STONE, V. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Particle and Fibre Toxicology, 2, 10(2005) [7] YI, J. H., CHEN, B. T., SCHWEGLER-BERRY, D., FRAZER, D., CASTRANOVA, V., MCBRIDE, C., KNUCKLES, T. L., STAPLETON, P. A., MINARCHICK, V. C., and NURKIEWICZ, T. R. Whole-body nanoparticle aerosol inhalation exposures. Journal of Visualized Experiments, 75, e50263(2013) [8] CHAN, T. L., LIU, S. Y., and YUE, Y. Nanoparticle formation and growth in turbulent flows using the bimodal TEMOM. Powder Technology, 323, 507-517(2018) [9] KYLAFIS, G. F., TOMLIN, A. S., SLEIGH, P. A., and VIGNES, A. Evolution of particle interactions between accidentally released aerosol particles generated from powdered engineered nanomaterials into a simulated workplace atmosphere. Journal of Aerosol Science, 129, 98-115(2019) [10] KIM, D. S., HONG, S. B., KIM, Y. J., and LEE, K.W. Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence. Journal of Aerosol Science, 37(12), 1781-1787(2006) [11] CHO, K., CHUNG, K., and BISWAS, P. Coagulation coefficient of agglomerates with different fractal dimensions. Aerosol Science and Technology, 45(6), 740-743(2011) [12] ANAND, S., MAYYA, Y. S., YU, M., SEIPENBUSCH, M., and KASPER, G. A numerical study of coagulation of nanoparticle aerosols injected continuously into a large, well stirred chamber. Journal of Aerosol Science, 52, 18-32(2012) [13] GUICHARD, R. and BELUT, E. Evaluation of a moments-based formulation for the transport and deposition of small inertia aerosols. The Journal of Computational Multiphase Flows, 6(4), 407-418(2014) [14] GUICHARD, R. and BELUT, E. Simulation of airborne nanoparticles transport, deposition and aggregation: experimental validation of a CFD-QMOM approach. Journal of Aerosol Science, 104, 16-31(2017) [15] LEE, K. W., LEE, Y. J., and HAN, D. S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime. Journal of Colloid and Interface Science, 188(2), 486-492(1997) [16] FRIEDLANDER, S. K. Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, John Wiley & Sons, New York (2000) [17] BARRETT, J. C. and JHEETA, J. S. Improving the accuracy of the moments method for solving the aerosol general dynamic equation. Journal of Aerosol Science, 27(8), 1135-1142(1996) [18] YU, M. and LIN, J. Z. Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model. International Journal of Heat and Mass Transfer, 53(4), 635-644(2010) [19] YU, M. Z., LIN, J. Z., and CHAN, T. L. A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Science and Technology, 42(9), 705-713(2008) [20] HINDS, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed., John Wiley & Sons, New York (1999) [21] BELUT, E. and THÉO, C. A new experimental dataset to validate CFD models of airborne nanoparticles agglomeration. 9th International Conference on Multiphase Flow, Firenze, Italy (2016) |