[1] O'FARRELL, C., MUPPIDI, S., BROCK, J. M., VAN NORMAN, J. W., and CLARK, I. G. Development of models for disk-gap-band parachutes deployed supersonically in the wake of a slender body. 2017 IEEE Aerospace Conference, IEEE, Big Sky, Montana (2017) [2] SENGUPTA, A., WITKOWSKI, A., ROWAN, J., TAEGER, Y., and KANDIS, M. Overview of the Mars Science Laboratory parachute decelerator system. 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, IEEE, Williamsburg, Virginia (2007) [3] MAYNARD, J. D. Aerodynamic characteristics of parachutes at Mach number from 1.6 to 3. NASA Technical Note, NASA, Washington D. C. (1961) [4] PETERSON, C. W. and STRICKLAND, J. H. The fluid dynamic of parachute inflation. Annual Reviews Fluid Mechancis, 28(1), 361-387(1961) [5] HEINRICH, H. G. Aerodynamic of the supersonic guide surface parachute. Journal of Aircraft, 3(2), 105-111(1966) [6] SENGUPTA, A. Fluid structure interaction of parachutes in supersonic planetary entry. 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA, Dublin, Ireland (2011) [7] SENGUPTA, A., ROEDER, J., KELSCH, R., WERNET, M., KANDIS, M., and WITKOWSKI, A. Supersonic disk-gap-band parachute performance in the wake of the Viking-type entry vehicle from Mach 2 to 2.5. AIAA Atmospheric Flight Mechanics Conference and Exhibit, AIAA, Honolulu, Hawaii (2008) [8] SENGUPTA, A., KELSCH, R., ROEDER, J., WERNET, M., WITKOWSKI, A., and KANDIS, M. Supersonic performance of disk-gap-band parachutes constrained to a 0-degree trim angle. Journal of Spacecraft and Rockets, 46(6), 1155-1163(2009) [9] WANG, L. R. Parachute Theory and Application (in Chinese), 2nd ed., Aerospace Industry Press, Beijing, 82-123(1997) [10] WERNET, M. P., LOCKE, R. J., WROBLEWSKI, A. and SENGUPTA, A. Application of stereo PIV on a supersonic parachute model. 47th AIAA Aerospace Sciences Meeting, AIAA, Orlando, Florida (2009) [11] BARNHARDT, M., DRAYNA, T., NOMPELIS, I., CANDLER, G. V., and GARRARD, W. Detached eddy simulations of the MSL parachute at supersonic conditions. 19th Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA, Williamsburg, Virginia (2007) [12] YANG, X., YU, L., LIU, M., and PANG, H. F. Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method. Chinese Journal of Aeronautics, 33(6), 1692-1702(2020) [13] YANG, X., YU, L., and ZHAO, X. S. Fluid-structure interaction study of the supersonic parachute using large-eddy simulation. Engineering Computations, 35(1), 157-168(2018) [14] YU, L., LI, S. S., and MING, X. Influence of the parachute elastic behavier on the canopy payload (in Chinese). Journal of Astronautics, 29(1), 381-385(2008) [15] JIA, H., JIANG, L. L., XUE, X. P., RONG, W., and WANG, Q. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes (in Chinese). Spacecraft Recovery and Remote Sensing, 40(6), 26-34(2019) [16] XUE, X. P., KOYAMA, H., and NAKAMURA, Y. Numerical simulation on supersonic aerodynamic interference for rigid and flexible parachute. 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA, New Orleans, Louisiana (2012) [17] DAI, G. and XUE, X. P. Numerical simulation of aerodynamic interaction of canopy disk models under supersonic conditions (in Chinese). Spacecraft Recovery and Remote Sensing, 39(6), 15-23(2018) [18] KARAGIOZIS, K., KAMAKOTI, R., CRIAK, F., and PANTANO, C. A computational study of supersonic disk-gap-band parachutes using large-eddy simulation coupled to a structural membrane. Journal of Fluids and Structures, 27(2), 175-192(2011) [19] BLAZEK, J. Computational Fluid Dynamics:Principles and Application, Elsevier, U. S. A. (2005) [20] YAN, C. Computational Fluid Dynamics Methods and Applications (in Chinese), 2nd ed., Beijing University of Aeronautics and Astronautics Press, Beijing (2006) [21] HILL, D. J., PANTANO, C., and PULLIN, D. I. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock. Journal of Fluid Mechanics, 557, 29-61(2006) [22] PULLIN, D. I. A vortex-based model for the subgrid flux of a passive scaler. Physics of Fluids, 12(9), 2311-2319(2000) [23] MISRA, A. and PULLIN, D. I. A vortex-based subgrid stress model for large-eddy simulation. Physics of Fluids, 9(8), 2443-2454(1997) [24] LUNDGREN, T. S. Strained spiral vortex model for turbulence fine structure. Physics of Fluids, 25(12), 2193-2203(1982) [25] VOELKL, T., PULLIN, D. I., and CHAN, D. C. A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Physics of Fluids, 12(7), 1810-1825(2001) [26] KOSOVIĆ, B., PULLIN, D. I., and SAMTANEY, R. Subgrid-scale modelling for large-eddy simulations of compressible turbulence. Physics of Fluids, 14(4), 1511-1522(2002) [27] HILL, D. J. and PULLIN, D. I. Hybrid tuned center-difference-WENO method for large eddy simulation in the presence of strong shocks. Journal of Computational Physics, 194, 435-450(2004) [28] LI, T., SUI, J. X., and WU, C. J. Numerical ivestigation of dynamical behavior of tethered rigir spheres in supersonic flow. Applied Mathematics and Mechanics (English Edition), 37(6), 749-760(2016) https://doi.org/10.1007/s10483-016-2090-6 [29] JOHARI, H. and DESABRAIS, K. J. Vortex shedding in the near wake of a parachute canopy. Journal of Fluid Mechanics, 536, 185-207(2005) [30] GONG, S. and WU, C. J. Large-eddy simulation study of the supersonic capsule/rigid disk-gap-band parachute system (in Chinese). Applied Mathematics and Mechanics, 42, 1-19(2021) [31] SENGUPTA, A., STELTZNER, A., COMEAUX, K., CANDLER, G., BARNHARDT, M., and PANTANO, C. Results from the Mars Science Laboratory parachute decelerator system supersonic qualification program. 2015 IEEE Aerospace Conference, IEEE, Big Sky, Montana (2015) [32] SENGUPTA, A., STELTZNER, A., WITKOWSKI, A., CANDLER, G., and PANTANO, C. Findings from the supersonic qualification program of the Mars Science Laboratoy parachute system. 20st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA, Seattle, Washington (2009) |