[1] ZHANG, Z. Y., ZHAO, N., ZHONG, W., WANG, L., and XU, B. F. Progresses in application of computational fluid dynamic methods to large scale wind turbine aerodynamics. Applied Mathematics and Mechanics (English Edition), 37(S1), 21-30(2016) [2] SHEN, W. Z., ZHU, W. J., and SØRENSEN, J. N. Actuator line/Navier-Stokes computations for the MEXICO rotor:comparison with detailed measurements. Wind Energy, 15(5), 811-825(2012) [3] LI, D. S., GUO, T., LI, R. N., YANG, C. X., CHENG, Z. X., LI, Y., and HU, W. R. A nonlinear model for aerodynamic configuration of wake behind horizontal-axis wind turbine. Applied Mathematics and Mechanics (English Edition), 40(9), 1313-1326(2019) https://doi.org/10.1007/s10483-019-2536-9 [4] LI, Y. and DUAN, L. Status of large scale wind turbine technology development abroad. Applied Mathematics and Mechanics (English Edition), 37(S1), 117-124(2016) [5] SANDERSE, B., VAN DER PIJL, S. P., and KOREN, B. Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy, 14(7), 799-819(2011) [6] RADHAKRISHNAN, S. and BELLAN, J. Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of compressible single-phase flow. Journal of Fluid Mechanics, 697, 399-435(2012) [7] SINGH, S., YOU, D., and BOSE, S. T. Large-eddy simulation of turbulent channel flow using explicit filtering and dynamic mixed models. Physics of Fluids, 24(8), 085105(2012) [8] MITTAL, A., SREENIVAS, K., TAYLOR, L. K., HERETH, L., and HILBERT, C. B. Blade-resolved simulations of a model wind turbine:effect of temporal convergence. Wind Energy, 19(10), 1761-1783(2016) [9] TROLDBORG, N., ZAHLE, F., RETHORE, P. E., and SØRENSEN, J. N. Comparison of wind turbine wake properties in non-sheared inflow predicted by different computational fluid dynamics rotor models. Wind Energy, 18(7), 1239-1250(2015) [10] WU, Y. T. and PORTE-AGEL, F. Large-eddy simulation of wind-turbine wakes:evaluation of turbine parametrisations. Boundary-Layer Meteorology, 138(3), 345-366(2011) [11] SØRENSEN, J. N., MIKKELSEN, R. F., HENNINGSON, D. S., IVANELL, S., SARMAST, S., and ANDERSEN, S. J. Simulation of wind turbine wakes using the actuator line technique. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 373(2035), 20140071(2015) [12] SARMAST, S., SHEN, W. Z., ZHU, W. J., MIKKELSEN, R. F., BRETON, S. P., and IVANELL, S. Validation of the actuator line and disc techniques using the new MEXICO measurements. Journal of Physics:Conference Series, 753, 032026(2016) [13] QIAN, Y. R., ZHANG, Z. Y., and WANG, T. G. Comparative study of the aerodynamic performance of the new MEXICO rotor under yaw conditions. Energies, 11(4), 833-851(2018) [14] VASATURO, R., KALKMAN, I., BLOCKEN, B., and VAN WESEMAEL, P. J. V. Large eddy simulation of the neutral atmospheric boundary layer:performance evaluation of three inflow methods for terrains with different roughness. Journal of Wind Engineering and Industrial Aerodynamics, 173, 241-261(2018) [15] TABOR, G. R. and BABA-AHMADI, M. H. Inlet conditions for large eddy simulation:a review. Computers & Fluids, 39(4), 553-567(2010) [16] SMIRNOV, A., SHI, S., and CELIK, I. Random flow generation technique for large eddy simulations and particle-dynamics modeling. Journal of Fluids Engineering, 123(2), 359-371(2001) [17] MATHEY, F., COKLJAT, D., BERTOGLIO, J. P., and SERGENT, E. Specification of LES inlet boundary condition using vortex method. Progress in Computational Fluid Dynamics, 6, 58-67(2006) [18] VAUTARD, R., THAIS, F., TOBIN, I., BRÉON, F. M., DE LAVERGNE, J. G. D., COLETTE, A., YIOU, P., and RUTI, P. M. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nature Communications, 5, 3196(2014) [19] CHURCHFIELD, M. J., LEE, S., MICHALAKES, J., and MORIARTY, P. J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, 13(14), 1-32(2012) [20] MENEVEAU, C., CALAF, M., and MEYERS, J. Large eddy simulation study of the fully developed wind-turbine array boundary layer. Physics of Fluids, 22(1), 46-56(2010) [21] ZHANG, W., MARKFORT, C. D., and PORTE-AGEL, F. Wind-turbine wakes in a convective boundary layer:a wind-tunnel study. Boundary-Layer Meteorology, 146(2), 161-179(2013) [22] DÖRENKÄMPER, M., WITHA, B., STEINFELD, G., HEINEMANN, D., and KÜHN, M. The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 144, 146-153(2015) [23] HEISEL, M., HONG, J., and GUALA, M. The spectral signature of wind turbine wake meandering:a wind tunnel and field-scale study. Wind Energy, 21(9), 715-731(2018) [24] JACOBSON, M. Z., ARCHER, C. L., and KEMPTON, A. Taming hurricanes with arrays of offshore wind turbines. Nature Climate Change, 4(3), 195-200(2014) [25] PORTE-AGEL, F., BASTANKHAH, M., and SHAMSODDIN, S. Wind-turbine and wind-farm flows:a review. Boundary-Layer Meteorology, 174(1), 1-59(2020) [26] ŐNDER, A. and MEYERS, J. On the interaction of very-large-scale motions in a neutral atmospheric boundary layer with a row of wind turbines. Journal of Fluid Mechanics, 841, 1040-1072(2018) [27] ZHENG, Z., GAO, Z. T., LI, D. S., LI, R. N., LI, Y., HU, Q. H., and HU, W. R. Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu-Part Ⅱ:numerical analysis. Science China Physics Mechanics & Astronomy, 61(9), 94712(2018) [28] KANG, S., YANG, X., and FOTIS, S. On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. Journal of Fluid Mechanics, 744(4), 376-403(2014) [29] FOTI, D., YANG, X., and SOTIROPOULOS, F. Similarity of wake meandering for different wind turbine designs for different scales. Journal of Fluid Mechanics, 842, 5-25(2018) [30] FOTI, D., YANG, X., SHEN, L., and SOTIROPOULOS, F. Effect of wind turbine nacelle on turbine wake dynamics in large wind farms. Journal of Fluid Mechanics, 869, 1-26(2019) [31] MARTÍNEZ-TOSSAS, L. A., CHURCHFIELD, M. J., and MENEVEAU, C. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution. Wind Energy, 20(6), 1083-1096(2017) [32] JHA, P. K. and SCHMITZ, S. Actuator curve embedding-an advanced actuator line model. Journal of Fluid Mechanics, 834(R2), 1-11(2018) [33] MENON, S. and KIM, W. W. High Reynolds number flow simulations using the localized dynamic subgrid-scale model. Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, 15-18(1996) [34] KIM, W. W. and MENON, S. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, 6-9(1997) [35] MOENG, C. H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 41(13), 2052-2062(1984) [36] HU, Q. H., LI, Y., DI, Y. J., and CHEN, J. W. A large-eddy simulation study of horizontal axis tidal turbine in different inflow conditions. Journal of Renewable and Sustainable Energy, 9(6), 064501(2017) [37] CHURCHFIELD, M. J., LI, Y., and MORIARTY, P. J. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 371(1985), 20120421(2013) [38] LI, D. S., GUO, T., LI, Y. R., HU, J. S., ZHENG, Z., LI, Y., DI, Y. J., HU, W. R., and LI, R. N. Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu-Part I:field measurement. Science China Physics Mechanics & Astronomy, 61(9), 94711(2018) [39] ISSA, R. I., AHMADI-BEFRUI, B., BESHAY, K. R., and GOSMAN, A. D. Solution of the implicitly discretised reacting flow equations by operator-splitting. Journal of Computational Physics, 93(2), 388-410(1991) [40] RHIE, C. M. and CHOW, W. L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11), 1525-1532(1983) [41] MOUKALLED, F., MANGANI, L., and DARWISH, M. The Finite Volume Method in Computational Fluid Dynamics:An Advanced Introduction with OpenFOAM and Matlab, 1st ed., Springer International Publishing, Switzerland, 303-364(2016) [42] BARLAS, E., BUCKINGHAM, S., and VAN BEECK, J. Roughness effects on wind-turbine wake dynamics in a boundary-layer wind tunnel. Boundary-Layer Meteorology, 158(1), 27-42(2016) [43] KROGSTAD, P. A. and ERIKSEN, P. E. "Blind test" calculations of the performance and wake development for a model wind turbine. Renewable Energy, 50, 325-333(2013) [44] KROGSTAD, P. A. and LUND, J. A. An experimental and numerical study of the performance of a model turbine. Wind Energy, 15(3), 443-457(2012) [45] SANTONI, C., CARRASQUILLO, K., ARENAS-NAVARRO, I., and LEONARDI, S. Effect of tower and nacelle on the flow past a wind turbine. Wind Energy, 20(12), 1927-1939(2017) [46] ZHANG, Z. Y., LI, C., and WANG, T. G. Numerical investigation and wind tunnel validation on near-wake vortical structures of wind turbine blades. Advances in Applied Mathematics & Mechanics, 8(4), 556-572(2016) [47] XIAO, J. P., WU, J., CHEN, L., and SHI, Z. Y. Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics (English Edition), 32(6), 729-738(2011) https://doi.org/10.1007/s10483-011-1452-x |